Cancer Res Treat.  2018 Jan;50(1):103-110. 10.4143/crt.2017.033.

Incorporating Neutrophil-to-lymphocyte Ratio and Platelet-to-lymphocyte Ratio in Place of Neutrophil Count and Platelet Count Improves Prognostic Accuracy of the International Metastatic Renal Cell Carcinoma Database Consortium Model

Affiliations
  • 1Department of Oncology, Military Institute of Medicine, Warsaw, Poland. pawel.chrom@gmail.com

Abstract

PURPOSE
The study investigated whether a replacement of neutrophil count and platelet count by neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) within the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) model would improve its prognostic accuracy.
MATERIALS AND METHODS
This retrospective analysis included consecutive patients with metastatic renal cell carcinoma treated with first-line tyrosine kinase inhibitors. The IMDC and modified-IMDC models were compared using: concordance index (CI), bias-corrected concordance index (BCCI), calibration plots, the Grønnesby and Borgan test, Bayesian Information Criterion (BIC), generalized R2, Integrated Discrimination Improvement (IDI), and continuous Net Reclassification Index (cNRI) for individual risk factors and the three risk groups.
RESULTS
Three hundred and twenty-one patients were eligible for analyses. The modified-IMDC model with NLR value of 3.6 and PLR value of 157 was selected for comparison with the IMDC model. Both models were well calibrated. All other measures favoured the modified-IMDC model over the IMDC model (CI, 0.706 vs. 0.677; BCCI, 0.699 vs. 0.671; BIC, 2,176.2 vs. 2,190.7; generalized R2, 0.238 vs. 0.202; IDI, 0.044; cNRI, 0.279 for individual risk factors; and CI, 0.669 vs. 0.641; BCCI, 0.669 vs. 0.641; BIC, 2,183.2 vs. 2,198.1; generalized R2, 0.163 vs. 0.123; IDI, 0.045; cNRI, 0.165 for the three risk groups).
CONCLUSION
Incorporation of NLR and PLR in place of neutrophil count and platelet count improved prognostic accuracy of the IMDC model. These findings require external validation before introducing into clinical practice.

Keyword

International Metastatic Renal Cell Carcinoma Database Consortium model; Neutrophil-to-lymphocyte ratio; Overall survival; Platelet-to-lymphocyte ratio; Prognosis; Tyrosine kinase inhibitors

MeSH Terms

Blood Platelets*
Calibration
Carcinoma, Renal Cell*
Discrimination (Psychology)
Humans
Neutrophils*
Platelet Count*
Prognosis
Protein-Tyrosine Kinases
Retrospective Studies
Risk Factors
Protein-Tyrosine Kinases

Figure

  • Fig. 1. Kaplan-Meier curves for overall survival (OS) stratified by the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) risk groups.

  • Fig. 2. Kaplan-Meier curves for overall survival (OS) stratified by the modified International Metastatic Renal Cell Carcinoma Database Consortium (MIMDC) risk groups.


Reference

References

1. Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol. 1999; 17:2530–40.
Article
2. Ruiz-Morales JM, Swierkowski M, Wells JC, Fraccon AP, Pasini F, Donskov F, et al. First-line sunitinib versus pazopanib in metastatic renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Eur J Cancer. 2016; 65:102–8.
Article
3. Heng DY, Xie W, Regan MM, Warren MA, Golshayan AR, Sahi C, et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol. 2009; 27:5794–9.
Article
4. Heng DY, Xie W, Regan MM, Harshman LC, Bjarnason GA, Vaishampayan UN, et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study. Lancet Oncol. 2013; 14:141–8.
Article
5. Ko JJ, Xie W, Kroeger N, Lee JL, Rini BI, Knox JJ, et al. The International Metastatic Renal Cell Carcinoma Database Consortium model as a prognostic tool in patients with metastatic renal cell carcinoma previously treated with first-line targeted therapy: a population-based study. Lancet Oncol. 2015; 16:293–300.
Article
6. Wells JC, Stukalin I, Norton C, Srinivas S, Lee JL, Donskov F, et al. Third-line targeted therapy in metastatic renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Eur Urol. 2017; 71:204–9.
Article
7. Templeton AJ, Knox JJ, Lin X, Simantov R, Xie W, Lawrence N, et al. Change in neutrophil-to-lymphocyte ratio in response to targeted therapy for metastatic renal cell carcinoma as a prognosticator and biomarker of efficacy. Eur Urol. 2016; 70:358–64.
Article
8. Hu K, Lou L, Ye J, Zhang S. Prognostic role of the neutrophil-lymphocyte ratio in renal cell carcinoma: a meta-analysis. BMJ Open. 2015; 5:e006404.
Article
9. Templeton AJ, Heng DY, Choueiri TK, McDermott DF, Fay AP, Srinivas S, et al. Neutrophil to lymphocyte ratio (NLR) and its effect on the prognostic value of the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) model for patients treated with targeted therapy (TT). J Clin Oncol. 2014; 32(4 Suppl):Abstr 470.
Article
10. Keizman D, Ish-Shalom M, Huang P, Eisenberger MA, Pili R, Hammers H, et al. The association of pre-treatment neutrophil to lymphocyte ratio with response rate, progression free survival and overall survival of patients treated with sunitinib for metastatic renal cell carcinoma. Eur J Cancer. 2012; 48:202–8.
Article
11. Cetin B, Berk V, Kaplan MA, Afsar B, Tufan G, Ozkan M, et al. Is the pretreatment neutrophil to lymphocyte ratio an important prognostic parameter in patients with metastatic renal cell carcinoma? Clin Genitourin Cancer. 2013; 11:141–8.
Article
12. Park TJ, Cho YH, Chung HS, Hwang EC, Jung SH, Hwang JE, et al. Prognostic significance of platelet-lymphocyte ratio in patients receiving first-line tyrosine kinase inhibitors for metastatic renal cell cancer. Springerplus. 2016; 5:1889.
Article
13. Chrom P, Stec R, Semeniuk-Wojtas A, Bodnar L, Spencer NJ, Szczylik C. Fuhrman grade and neutrophil-to-lymphocyte ratio influence on survival in patients with metastatic renal cell carcinoma treated with first-line tyrosine kinase inhibitors. Clin Genitourin Cancer. 2016; 14:457–64.
Article
14. Gunduz S, Mutlu H, Tural D, Yildiz O, Uysal M, Coskun HS, et al. Platelet to lymphocyte ratio as a new prognostic for patients with metastatic renal cell cancer. Asia Pac J Clin Oncol. 2015; 11:288–92.
Article
15. Schemper M, Smith TL. A note on quantifying follow-up in studies of failure time. Control Clin Trials. 1996; 17:343–6.
Article
16. Contal C, O’Quigley J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput Stat Data Anal. 1999; 30:253–70.
Article
17. Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996; 15:361–87.
18. Gronnesby JK, Borgan O. A method for checking regression models in survival analysis based on the risk score. Lifetime Data Anal. 1996; 2:315–28.
Article
19. Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008; 27:157–72.
Article
20. Pencina MJ, D'Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011; 30:11–21.
Article
21. Chambless LE, Cummiskey CP, Cui G. Several methods to assess improvement in risk prediction models: extension to survival analysis. Stat Med. 2011; 30:22–38.
Article
22. Uno H, Tian L, Cai T, Kohane IS, Wei LJ. A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data. Stat Med. 2013; 32:2430–42.
Article
23. Beuselinck B, Vano YA, Oudard S, Wolter P, De Smet R, Depoorter L, et al. Prognostic impact of baseline serum Creactive protein in patients with metastatic renal cell carcinoma (RCC) treated with sunitinib. BJU Int. 2014; 114:81–9.
Article
24. Patil S, Figlin RA, Hutson TE, Michaelson MD, Negrier S, Kim ST, et al. Prognostic factors for progression-free and overall survival with sunitinib targeted therapy and with cytokine as first-line therapy in patients with metastatic renal cell carcinoma. Ann Oncol. 2011; 22:295–300.
Article
25. Yildiz I, Sen F, Kilic L, Ekenel M, Ordu C, Kilicaslan I, et al. Prognostic factors associated with the response to sunitinib in patients with metastatic renal cell carcinoma. Curr Oncol. 2013; 20:e546–53.
Article
26. Fumagalli LA, Vinke J, Hoff W, Ypma E, Brivio F, Nespoli A. Lymphocyte counts independently predict overall survival in advanced cancer patients: a biomarker for IL-2 immunotherapy. J Immunother. 2003; 26:394–402.
Article
27. Song W, Yeh CR, He D, Wang Y, Xie H, Pang ST, et al. Infiltrating neutrophils promote renal cell carcinoma progression via VEGFa/HIF2alpha and estrogen receptor beta signals. Oncotarget. 2015; 6:19290–304.
28. Uzzo RG, Rayman P, Kolenko V, Clark PE, Bloom T, Ward AM, et al. Mechanisms of apoptosis in T cells from patients with renal cell carcinoma. Clin Cancer Res. 1999; 5:1219–29.
29. Feinstein AR, Sosin DM, Wells CK. The Will Rogers phenomenon: stage migration and new diagnostic techniques as a source of misleading statistics for survival in cancer. N Engl J Med. 1985; 312:1604–8.
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr