Int J Stem Cells.  2017 Nov;10(2):160-168. 10.15283/ijsc17014.

Treatment with Allogenic Mesenchymal Stromal Cells in a Murine Model of Systemic Lupus Erythematosus

Affiliations
  • 1Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy. chiara.tani@for.unipi.it
  • 2Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, iPATH. Berlin, core unit of the Charité. Berlin, Germany.
  • 3Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.

Abstract


OBJECTIVE
Pre-clinical and uncontrolled studies in patients with systemic lupus erythematosus (SLE) showed that mesenchymal stromal cells (MSCs) have a potential therapeutic role in refractory cases. The optimal therapeutic strategy in these patients remain to be elucidated. Our aim was to test the hypothesis that repeated administrations of 1×10⁶/kg body weight of allogenic MSCs, that is a significantly lower dosage with respect to the fixed 1×10⁶ MSC used in animal models, can be effective in improving the clinical course of a murine SLE model.
METHODS
Bone marrow derived MSCs were obtained from 12-week-old C57BL/6J mice. Seventy-five 8 weeks old female NZ mice were randomly assigned to receive via caudal vein the following alternative treatments: 1) single infusion of 10⁶ MSCs/kg body weight at 18 weeks of age (NZ(s18)) or at at 22 weeks of age (NZ(s22)); 2) multiple monthly infusions of 10⁶ MSCs/kg body weight starting at 18 weeks of age (NZ(M18)) or at 22 weeks of age (NZ(M22)); 3) saline infusions (NZ(c)) Fifteen 8 weeks old C57BL/6J mice (Envigo, Huntingdon, UK) were used as untreated controls (C). Weekly, body weight was recorded and twenty-four hour urines were collected by metabolic cages for each animal; proteinuria was detected by dipstick analysis. At sacrifice, peripheral blood samples were collected from mice and anti-dsDNA antibodies were detected by enzyme immunoassorbent assay (ELISA) method using commercial kits. At sacrifice, kidneys were analyzed for histopathology and immunohistochemical analysis for B220, CD4, MPO, CD4⁺Foxp3, F40/80 infiltration was performed.
RESULTS
Proteinuria occurrence was delayed NZ(S) and NZ(M) mice, no differences were observed in anti-dsDNA autoantibody titer among the groups at the different time-points; at 36 weeks, no significant differences were observed in term of nephritis scores. Inflammatory cells deposition (MPO and F4/80 positive cells) in NZM was significantly higher than in NZ and NZ(S). An overexpression of B lymphocytes (B220) was found in NZ(M) while T regulatory cells (CD4⁺ Foxp3⁺ cells) were reduced in both NZ(S) and NZ(M) with respect to NZ(c).
CONCLUSIONS
Overall, our study failed to show a positive effect of a treatment with murine MSCs in this model and, for some aspects, even deleterious results seem to be observed.

Keyword

Mesenchymal stromal cells; Systemic lupus erythematosus; Animal model; Lupus nephritis

MeSH Terms

Animals
Antibodies
B-Lymphocytes
Body Weight
Bone Marrow
Female
Humans
Kidney
Lupus Erythematosus, Systemic*
Lupus Nephritis
Mesenchymal Stromal Cells*
Methods
Mice
Models, Animal
Nephritis
Proteinuria
Veins
Antibodies

Figure

  • Fig. 1 24-hour proteinuria (mg/24 h).

  • Fig. 2 Anti-dsDNA levels at different time points. Results are expressed as optical density (OD) (mean of the optical density readings serum at 450 nm) as measured by a microtiter plate reader (Ultrospec2000, Pharmacia Biotech).

  • Fig. 3 Kidney Histology and Immunohistochemistry. (A) NZ HE×100 scale bar 100 μm, (B) NZs HE × 100 scale bar 100 μm, (C) NZm HE×100 scale bar 100 μm, (D) NZ CD3-AP B220×100 scale bar 100 μm, (E) NZs CD3-AP B220×100 scale bar 100 μm, (F) NZm CD3-AP B220×100 scale bar 100 μm, (G) NZ CD4-AP Foxp-3×100 scale bar 100 μm, (H) NZs CD4-AP Foxp-3×100 scale bar 100 μm, (I) NZm CD4-AP Foxp-3×100 scale bar 100 μm, (J) NZ MPO-AP×400 scale bar 100 μm, (K) NZs MPO-AP×400 scale bar 100 μm, (L) NZm MPO-AP×400 scale bar 100 μm.


Reference

References

1. Lisnevskaia L, Murphy G, Isenberg D. Systemic lupus erythematosus. Lancet. 2014; 384:1878–1888. DOI: 10.1016/S0140-6736(14)60128-8. PMID: 24881804.
Article
2. Alchi B, Jayne D, Labopin M, Demin A, Sergeevicheva V, Alexander T, Gualandi F, Gruhn B, Ouyang J, Rzepecki P, Held G, Sampol A, Voswinkel J, Ljungman P, Fassas A, Badoglio M, Saccardi R, Farge D. EBMT Autoimmune Disease Working Party Members. Autologous haematopoietic stem cell transplantation for systemic lupus erythematosus: data from the European Group for Blood and Marrow Transplantation registry. Lupus. 2013; 22:245–253. DOI: 10.1177/0961203312470729.
Article
3. Gu F, Wang D, Zhang H, Feng X, Gilkeson GS, Shi S, Sun L. Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clin Rheumatol. 2014; 33:1611–1619. DOI: 10.1007/s10067-014-2754-4. PMID: 25119864.
Article
4. Li X, Wang D, Liang J, Zhang H, Sun L. Mesenchymal SCT ameliorates refractory cytopenia in patients with systemic lupus erythematosus. Bone Marrow Transplant. 2013; 48:544–550. DOI: 10.1038/bmt.2012.184.
Article
5. Wang D, Niu L, Feng X, Yuan X, Zhao S, Zhang H, Liang J, Zhao C, Wang H, Hua B, Sun L. Long-term safety of umbilical cord mesenchymal stem cells transplantation for systemic lupus erythematosus: a 6-year follow-up study. Clin Exp Med. 2016; [Epub ahead of print].
Article
6. Le Blanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med. 2007; 262:509–525. DOI: 10.1111/j.1365-2796.2007.01844.x. PMID: 17949362.
Article
7. Moll G, Rasmusson-Duprez I, von Bahr L, Connolly-Andersen AM, Elgue G, Funke L, Hamad OA, Lönnies H, Magnusson PU, Sanchez J, Teramura Y, Nilsson-Ekdahl K, Ringdén O, Korsgren O, Nilsson B, Le Blanc K. Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells. 2012; 30:1565–1574. DOI: 10.1002/stem.1111. PMID: 22522999.
Article
8. Moll G, Alm JJ, Davies LC, von Bahr L, Heldring N, Stenbeck-Funke L, Hamad OA, Hinsch R, Ignatowicz L, Locke M, Lönnies H, Lambris JD, Teramura Y, Nilsson-Ekdahl K, Nilsson B, Le Blanc K. Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells. 2014; 32:2430–2442. DOI: 10.1002/stem.1729. PMID: 24805247. PMCID: 4381870.
Article
9. Prockop DJ, Brenner M, Fibbe WE, Horwitz E, Le Blanc K, Phinney DG, Simmons PJ, Sensebe L, Keating A. Defining the risks of mesenchymal stromal cell therapy. Cytotherapy. 2010; 12:576–578. DOI: 10.3109/14653249.2010.507330. PMID: 20735162.
Article
10. von Bahr L, Sundberg B, Lönnies L, Sander B, Karbach H, Hägglund H, Ljungman P, Gustafsson B, Karlsson H, Le Blanc K, Ringdén O. Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant. 2012; 18:557–564. DOI: 10.1016/j.bbmt.2011.07.023.
Article
11. Lundberg J, Södersten E, Sundström E, Le Blanc K, Andersson T, Hermanson O, Holmin S. Targeted intra-arterial transplantation of stem cells to the injured CNS is more effective than intravenous administration: engraftment is dependent on cell type and adhesion molecule expression. Cell Transplant. 2012; 21:333–343. DOI: 10.3727/096368911X576036.
Article
12. Collins E, Gu F, Qi M, Molano I, Ruiz P, Sun L, Gilkeson GS. Differential efficacy of human mesenchymal stem cells based on source of origin. J Immunol. 2014; 193:4381–4390. DOI: 10.4049/jimmunol.1401636. PMID: 25274529. PMCID: 4201962.
Article
13. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012; 21:2724–2752. DOI: 10.1089/scd.2011.0722. PMID: 22468918.
Article
14. Woodworth TG, Furst DE. Safety and feasibility of umbilical cord mesenchymal stem cells in treatment-refractory systemic lupus erythematosus nephritis: time for a double-blind placebo-controlled trial to determine efficacy. Arthritis Res Ther. 2014; 16:113. DOI: 10.1186/ar4677. PMID: 25166210. PMCID: 4261567.
Article
15. Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009; 4:102–106. DOI: 10.1038/nprot.2008.221. PMID: 19131962.
Article
16. Tropel P, Noël D, Platet N, Legrand P, Benabid AL, Berger F. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res. 2004; 295:395–406. DOI: 10.1016/j.yexcr.2003.12.030. PMID: 15093739.
Article
17. Tao X, Fan F, Hoffmann V, Longo NS, Lipsky PE. Therapeutic impact of the ethyl acetate extract of Tripterygium wilfordii Hook F on nephritis in NZB/W F1 mice. Arthritis Res Ther. 2006; 8:R24. DOI: 10.1186/ar1879. PMID: 16507125. PMCID: 1526566.
Article
18. Chang JW, Hung SP, Wu HH, Wu WM, Yang AH, Tsai HL, Yang LY, Lee OK. Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplant. 2011; 20:245–257. DOI: 10.3727/096368910X520056.
Article
19. Choi EW, Shin IS, Park SY, Park JH, Kim JS, Yoon EJ, Kang SK, Ra JC, Hong SH. Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation. Arthritis Rheum. 2012; 64:243–253. DOI: 10.1002/art.33313.
Article
20. Gu Z, Akiyama K, Ma X, Zhang H, Feng X, Yao G, Hou Y, Lu L, Gilkeson GS, Silver RM, Zeng X, Shi S, Sun L. Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice. Lupus. 2010; 19:1502–1514. DOI: 10.1177/0961203310373782. PMID: 20647254.
Article
21. Gu F, Molano I, Ruiz P, Sun L, Gilkeson GS. Differential effect of allogeneic versus syngeneic mesenchymal stem cell transplantation in MRL/lpr and (NZB/NZW)F1 mice. Clin Immunol. 2012; 145:142–152. DOI: 10.1016/j.clim.2012.08.012. PMID: 23041504.
Article
22. Jang E, Jeong M, Kim S, Jang K, Kang BK, Lee DY, Bae SC, Kim KS, Youn J. Infusion of human bone marrow-derived mesenchymal stem cells alleviates autoimmune nephritis in a lupus model by suppressing follicular helper T-cell development. Cell Transplant. 2016; 25:1–15. DOI: 10.3727/096368915X688173.
Article
23. Ji S, Guo Q, Han Y, Tan G, Luo Y, Zeng F. Mesenchymal stem cell transplantation inhibits abnormal activation of Akt/GSK3β signaling pathway in T cells from systemic lupus erythematosus mice. Cell Physiol Biochem. 2012; 29:705–712. DOI: 10.1159/000178590.
Article
24. Ma X, Che N, Gu Z, Huang J, Wang D, Liang J, Hou Y, Gilkeson G, Lu L, Sun L. Allogenic mesenchymal stem cell transplantation ameliorates nephritis in lupus mice via inhibition of B-cell activation. Cell Transplant. 2013; 22:2279–2290. DOI: 10.3727/096368912X658692.
Article
25. Youd M, Blickarz C, Woodworth L, Touzjian T, Edling A, Tedstone J, Ruzek M, Tubo R, Kaplan J, Lodie T. Allogeneic mesenchymal stem cells do not protect NZBxNZW F1 mice from developing lupus disease. Clin Exp Immunol. 2010; 161:176–186. PMID: 20456409. PMCID: 2940163.
Article
26. Zhou K, Zhang H, Jin O, Feng X, Yao G, Hou Y, Sun L. Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice. Cell Mol Immunol. 2008; 5:417–424. DOI: 10.1038/cmi.2008.52.
Article
27. Schena F, Gambini C, Gregorio A, Mosconi M, Reverberi D, Gattorno M, Casazza S, Uccelli A, Moretta L, Martini A, Traggiai E. Interferon-γ-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum. 2010; 62:2776–2786. DOI: 10.1002/art.27560. PMID: 20496367.
Article
28. Che N, Li X, Zhang L, Liu R, Chen H, Gao X, Shi S, Chen W, Sun L. Impaired B cell inhibition by lupus bone marrow mesenchymal stem cells is caused by reduced CCL2 expression. J Immunol. 2014; 193:5306–5314. DOI: 10.4049/jimmunol.1400036. PMID: 25339674.
Article
29. Li X, Liu L, Meng D, Wang D, Zhang J, Shi D, Liu H, Xu H, Lu L, Sun L. Enhanced apoptosis and senescence of bone-marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Stem Cells Dev. 2012; 21:2387–2394. DOI: 10.1089/scd.2011.0447. PMID: 22375903.
Article
30. Nie Y, Lau C, Lie A, Chan G, Mok M. Defective phenotype of mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus. 2010; 19:850–859. DOI: 10.1177/0961203310361482. PMID: 20511276.
Article
31. Geng L, Li X, Feng X, Zhang J, Wang D, Chen J, Liu R, Chen H, Sun L. Association of TNF-α with impaired migration capacity of mesenchymal stem cells in patients with systemic lupus erythematosus. J Immunol Res. 2014; 2014:169082. DOI: 10.1155/2014/169082.
32. Wang D, Li J, Zhang Y, Zhang M, Chen J, Li X, Hu X, Jiang S, Shi S, Sun L. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther. 2014; 16:R79. DOI: 10.1186/ar4520. PMID: 24661633. PMCID: 4060570.
Article
33. Pacini S. Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs). Front Cell Dev Biol. 2014; 2:50. DOI: 10.3389/fcell.2014.00050. PMID: 25364757. PMCID: 4206995.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr