Int J Stem Cells.  2017 Nov;10(2):119-128. 10.15283/ijsc17029.

Glaucoma, Stem Cells, and Gene Therapy: Where Are We Now?

Affiliations
  • 1Neurogenetic Ward, Comprehensive Child Developmental Center, Shiraz University of Medical Sciences, Shiraz, Iran.
  • 2Visiting Scientist at Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
  • 3Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • 4Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
  • 5Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. shhekmati2002@yahoo.com
  • 6Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

Abstract

Glaucoma is the second most common cause of blindness, affecting 70~80 million people around the world. The death of retinal ganglion cells (RGCs) is the main cause of blindness related to this disease. Current therapies do not provide enough protection and regeneration of RGCs. A novel opportunity for treatment of glaucoma is application of technologies related to stem cell and gene therapy. In this perspective we will thus focus on emerging approaches to glaucoma treatment including stem cells and gene therapy.

Keyword

Ganglion cells; Gene therapy; Glaucoma; Retina; Stem cells

MeSH Terms

Blindness
Genetic Therapy*
Glaucoma*
Regeneration
Retina
Retinal Ganglion Cells
Stem Cells*

Reference

References

1. Wang GQ, Bai ZX, Shi J, Luo S, Chang HF, Sai XY. Prevalence and risk factors for eye diseases, blindness, and low vision in Lhasa, Tibet. Int J Ophthalmol. 2013; 6:237–241. PMID: 23638429. PMCID: 3633767.
2. Xu ZR, Jiang FG, Chen F. Effects of abnormal optineurin expression on the survival of the rat retinal ganglion cell line RGC-5. Genet Mol Res. 2015; 14:9171–9180. DOI: 10.4238/2015.August.7.27. PMID: 26345850.
Article
3. Qiu X, Wu K, Lin X, Liu Q, Ye Y, Yu M. Dexamethasone increases Cdc42 expression in human TM-1 cells. Curr Eye Res. 2015; 40:290–299. DOI: 10.3109/02713683.2014.922191.
Article
4. Goldman D. Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014; 15:431–442. DOI: 10.1038/nrn3723. PMID: 24894585. PMCID: 4249724.
Article
5. Byrne LC, Oztürk BE, Lee T, Fortuny C, Visel M, Dalkara D, Schaffer DV, Flannery JG. Retinoschisin gene therapy in photoreceptors, Müller glia or all retinal cells in the Rs1h−/− mouse. Gene Ther. 2014; 21:585–592. DOI: 10.1038/gt.2014.31. PMID: 24694538. PMCID: 4047144.
Article
6. Surgucheva I, Shestopalov VI, Surguchov A. Effect of gamma-synuclein silencing on apoptotic pathways in retinal ganglion cells. J Biol Chem. 2008; 283:36377–36385. DOI: 10.1074/jbc.M806660200. PMID: 18936092. PMCID: 2606004.
Article
7. Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: an update. Am J Med Genet C Semin Med Genet. 2016; 172:349–366. DOI: 10.1002/ajmg.c.31534. PMID: 27862925.
Article
8. Jayaram H, Jones MF, Eastlake K, Cottrill PB, Becker S, Wiseman J, Khaw PT, Limb GA. Transplantation of photoreceptors derived from human Muller glia restore rod function in the P23H rat. Stem Cells Transl Med. 2014; 3:323–333. DOI: 10.5966/sctm.2013-0112. PMID: 24477073. PMCID: 3952927.
Article
9. Angbohang A, Wu N, Charalambous T, Eastlake K, Lei Y, Kim YS, Sun XH, Limb GA. Downregulation of the canonical WNT signaling pathway by TGFβ1 inhibits photoreceptor differentiation of adult human müller glia with stem cell characteristics. Stem Cells Dev. 2016; 25:1–12. DOI: 10.1089/scd.2015.0262.
Article
10. Park SC, Su D, Tello C. Anti-VEGF therapy for the treatment of glaucoma: a focus on ranibizumab and bevacizumab. Expert Opin Biol Ther. 2012; 12:1641–1647. DOI: 10.1517/14712598.2012.721772. PMID: 22963411.
Article
11. Horsley MB, Kahook MY. Anti-VEGF therapy for glaucoma. Curr Opin Ophthalmol. 2010; 21:112–117. DOI: 10.1097/ICU.0b013e3283360aad.
Article
12. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003; 23:9361–9374. DOI: 10.1128/MCB.23.24.9361-9374.2003. PMID: 14645546. PMCID: 309606.
Article
13. Xin X, Rodrigues M, Umapathi M, Kashiwabuchi F, Ma T, Babapoor-Farrokhran S, Wang S, Hu J, Bhutto I, Welsbie DS, Duh EJ, Handa JT, Eberhart CG, Lutty G, Semenza GL, Montaner S, Sodhi A. Hypoxic retinal Muller cells promote vascular permeability by HIF-1-dependent up-regulation of angiopoietin-like 4. Proc Natl Acad Sci U S A. 2013; 110:E3425–E3434. DOI: 10.1073/pnas.1217091110. PMID: 23959876. PMCID: 3767527.
14. Rodrigues M, Xin X, Jee K, Babapoor-Farrokhran S, Kashiwabuchi F, Ma T, Bhutto I, Hassan SJ, Daoud Y, Baranano D, Solomon S, Lutty G, Semenza GL, Montaner S, Sodhi A. VEGF secreted by hypoxic Müller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes. 2013; 62:3863–3873. DOI: 10.2337/db13-0014. PMID: 23884892. PMCID: 3806594.
Article
15. Liby K, Neltner B, Mohamet L, Burd C, Ben-Jonathan N. Endostatin expression by MDA-MB-435 breast cancer cells effectively inhibits tumor growth. Cancer Biol Ther. 2003; 2:48–52. DOI: 10.4161/cbt.179. PMID: 12673115.
Article
16. Faiq MA, Dada R, Qadri R, Dada T. CYP1B1-mediated pathobiology of primary congenital glaucoma. J Curr Glaucoma Pract. 2015; 9:77–80. DOI: 10.5005/jp-journals-10008-1189.
Article
17. Choudhary D, Jansson I, Schenkman JB. CYP1B1, a developmental gene with a potential role in glaucoma therapy. Xenobiotica. 2009; 39:606–615. DOI: 10.1080/00498250903000198. PMID: 19622003.
Article
18. Song WT, Zhang XY, Xia XB. Atoh7 promotes the differentiation of retinal stem cells derived from Müller cells into retinal ganglion cells by inhibiting Notch signaling. Stem Cell Res Ther. 2013; 4:94. DOI: 10.1186/scrt305.
Article
19. Venturini C, Nag A, Hysi PG, Wang JJ, Wong TY, Healey PR, Mitchell P, Hammond CJ, Viswanathan AC. Wellcome Trust Case Control Consortium 2, BMES GWAS Group. Clarifying the role of ATOH7 in glaucoma endophenotypes. Br J Ophthalmol. 2014; 98:562–566. DOI: 10.1136/bjophthalmol-2013-304080. PMID: 24457358.
Article
20. Yao J, Sun X, Wang Y, Xu G, Qian J. Math5 promotes retinal ganglion cell expression patterns in retinal progenitor cells. Mol Vis. 2007; 13:1066–1072. PMID: 17653051. PMCID: 2779150.
21. Song WT, Zeng Q, Xia XB, Xia K, Pan Q. Atoh7 promotes retinal Müller cell differentiation into retinal ganglion cells. Cytotechnology. 2016; 68:267–277. DOI: 10.1007/s10616-014-9777-1.
Article
22. Hickmott JW, Chen CY, Arenillas DJ, Korecki AJ, Lam SL, Molday LL, Bonaguro RJ, Zhou M, Chou AY, Mathelier A, Boye SL, Hauswirth WW, Molday RS, Wasserman WW, Simpson EM. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina. Mol Ther Methods Clin Dev. 2016; 3:16051. DOI: 10.1038/mtm.2016.51. PMID: 27556059. PMCID: 4980111.
Article
23. Maihöfner C, Schlötzer-Schrehardt U, Gühring H, Zeilhofer HU, Naumann GO, Pahl A, Mardin C, Tamm ER, Brune K. Expression of cyclooxygenase-1 and -2 in normal and glaucomatous human eyes. Invest Ophthalmol Vis Sci. 2001; 42:2616–2624. PMID: 11581208.
24. Barraza RA, McLaren JW, Poeschla EM. Prostaglandin pathway gene therapy for sustained reduction of intraocular pressure. Mol Ther. 2010; 18:491–501. DOI: 10.1038/mt.2009.278. PMCID: 2839422.
Article
25. Khare PD, Loewen N, Teo W, Barraza RA, Saenz DT, Johnson DH, Poeschla EM. Durable, safe, multi-gene lentiviral vector expression in feline trabecular meshwork. Mol Ther. 2008; 16:97–106. DOI: 10.1038/sj.mt.6300318.
Article
26. Ko ML, Hu DN, Ritch R, Sharma SC. The combined effect of brain-derived neurotrophic factor and a free radical scavenger in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000; 41:2967–2971. PMID: 10967052.
27. Nafissi N, Foldvari M. Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools. Front Neurosci. 2015; 9:355. DOI: 10.3389/fnins.2015.00355. PMID: 26528114. PMCID: 4604245.
Article
28. Kimura A, Namekata K, Guo X, Harada C, Harada T. Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration. Int J Mol Sci. 2016; 17:E1584. DOI: 10.3390/ijms17091584. PMID: 27657046. PMCID: 5037849.
Article
29. Hu Y, Cho S, Goldberg JL. Neurotrophic effect of a novel TrkB agonist on retinal ganglion cells. Invest Ophthalmol Vis Sci. 2010; 51:1747–1754. DOI: 10.1167/iovs.09-4450. PMCID: 2868417.
Article
30. Johnson TV, Bull ND, Martin KR. Neurotrophic factor delivery as a protective treatment for glaucoma. Exp Eye Res. 2011; 93:196–203. DOI: 10.1016/j.exer.2010.05.016.
Article
31. Tassoni A, Gutteridge A, Barber AC, Osborne A, Martin KR. Molecular mechanisms mediating retinal reactive gliosis following bone marrow mesenchymal stem cell transplantation. Stem Cells. 2015; 33:3006–3016. DOI: 10.1002/stem.2095. PMID: 26175331. PMCID: 4832383.
Article
32. Checa-Casalengua P, Jiang C, Bravo-Osuna I, Tucker BA, Molina-Martínez IT, Young MJ, Herrero-Vanrell R. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release. 2011; 156:92–100. DOI: 10.1016/j.jconrel.2011.06.023. PMID: 21704662.
Article
33. Semba K, Namekata K, Kimura A, Harada C, Mitamura Y, Harada T. Brimonidine prevents neurodegeneration in a mouse model of normal tension glaucoma. Cell Death Dis. 2014; 5:e1341. DOI: 10.1038/cddis.2014.306. PMID: 25032864. PMCID: 4123097.
Article
34. Koeberle PD, Bähr M. The upregulation of GLAST-1 is an indirect antiapoptotic mechanism of GDNF and neurturin in the adult CNS. Cell Death Differ. 2008; 15:471–483. DOI: 10.1038/sj.cdd.4402281.
Article
35. Ruberte J, Ayuso E, Navarro M, Carretero A, Nacher V, Haurigot V, George M, Llombart C, Casellas A, Costa C, Bosch A, Bosch F. Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease. J Clin Invest. 2004; 113:1149–1157. DOI: 10.1172/JCI19478. PMID: 15085194. PMCID: 385397.
Article
36. Ma J, Guo C, Guo C, Sun Y, Liao T, Beattie U, López FJ, Chen DF, Lashkari K. Transplantation of human neural progenitor cells expressing IGF-1 enhances retinal ganglion cell survival. PLoS One. 2015; 10:e0125695. DOI: 10.1371/journal.pone.0125695. PMID: 25923430. PMCID: 4414591.
Article
37. Zhao M, Andrieu-Soler C, Kowalczuk L, Paz Cortés M, Berdugo M, Dernigoghossian M, Halili F, Jeanny JC, Goldenberg B, Savoldelli M, El Sanharawi M, Naud MC, van Ijcken W, Pescini-Gobert R, Martinet D, Maass A, Wijnholds J, Crisanti P, Rivolta C, Behar-Cohen F. A new CRB1 rat mutation links Müller glial cells to retinal telangiectasia. J Neurosci. 2015; 35:6093–6106. DOI: 10.1523/JNEUROSCI.3412-14.2015. PMID: 25878282. PMCID: 4397606.
Article
38. Alves CH, Pellissier LP, Vos RM, Garcia Garrido M, Sothilingam V, Seide C, Beck SC, Klooster J, Furukawa T, Flannery JG, Verhaagen J, Seeliger MW, Wijnholds J. Targeted ablation of Crb2 in photoreceptor cells induces retinitis pigmentosa. Hum Mol Genet. 2014; 23:3384–3401. DOI: 10.1093/hmg/ddu048. PMID: 24493795.
Article
39. Pellissier LP, Alves CH, Quinn PM, Vos RM, Tanimoto N, Lundvig DM, Dudok JJ, Hooibrink B, Richard F, Beck SC, Huber G, Sothilingam V, Garcia Garrido M, Le Bivic A, Seeliger MW, Wijnholds J. Targeted ablation of CRB1 and CRB2 in retinal progenitor cells mimics Leber congenital amaurosis. PLoS Genet. 2013; 9:e1003976. DOI: 10.1371/journal.pgen.1003976. PMID: 24339791. PMCID: 3854796.
Article
40. Dallaire A, Simard MJ. The implication of microRNAs and endo-siRNAs in animal germline and early development. Dev Biol. 2016; 416:18–25. DOI: 10.1016/j.ydbio.2016.06.007. PMID: 27287880.
Article
41. Yu-Wai-Man C, Tagalakis AD, Manunta MD, Hart SL, Khaw PT. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis. Sci Rep. 2016; 6:21881. DOI: 10.1038/srep21881. PMID: 26905457. PMCID: 4764806.
Article
42. Mahdy MA. Gene therapy in glaucoma-3: Therapeutic approaches. Oman J Ophthalmol. 2010; 3:109–116. DOI: 10.4103/0974-620X.71883. PMID: 21120045. PMCID: 2992156.
Article
43. Chiasseu M, Cueva Vargas JL, Destroismaisons L, Vande Velde C, Leclerc N, Di Polo A. Tau accumulation, altered phosphorylation, and missorting promote neurodegeneration in glaucoma. J Neurosci. 2016; 36:5785–5798. DOI: 10.1523/JNEUROSCI.3986-15.2016. PMID: 27225768.
Article
44. Webber HC, Bermudez JY, Sethi A, Clark AF, Mao W. Crosstalk between TGFβ and Wnt signaling pathways in the human trabecular meshwork. Exp Eye Res. 2016; 148:97–102. DOI: 10.1016/j.exer.2016.04.007. PMID: 27091054. PMCID: 5310225.
Article
45. Gonzalez JM Jr. Existence of the canonical Wnt signaling pathway in the human trabecular meshwork. Invest Ophthalmol Vis Sci. 2012; 53:6972. DOI: 10.1167/iovs.12-10985. PMID: 23047718.
Article
46. Brennan LA, Kantorow M. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Exp Eye Res. 2009; 88:195–203. DOI: 10.1016/j.exer.2008.05.018. PMCID: 2683477.
Article
47. Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res. 2013; 752:153–171. DOI: 10.1016/j.mrrev.2013.01.001. PMID: 23337404.
Article
48. Wu JH, Zhang SH, Nickerson JM, Gao FJ, Sun Z, Chen XY, Zhang SJ, Zhang R, Gao F, Chen JY, Luo Y, Wang Y, Sun XH. Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma. Neurobiol Dis. 2015; 74:167–179. DOI: 10.1016/j.nbd.2014.11.014. PMCID: 4523228.
Article
49. Jiang W, Tang L, Zeng J, Chen B. Adeno-associated virus mediated SOD gene therapy protects the retinal ganglion cells from chronic intraocular pressure elevation induced injury via attenuating oxidative stress and improving mitochondrial dysfunction in a rat model. Am J Transl Res. 2016; 8:799–810. PMID: 27158370. PMCID: 4846927.
50. Kim KY, Perkins GA, Shim MS, Bushong E, Alcasid N, Ju S, Ellisman MH, Weinreb RN, Ju WK. DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma. Cell Death Dis. 2015; 6:e1839. DOI: 10.1038/cddis.2015.180. PMID: 26247724. PMCID: 4558491.
Article
51. Petit L, Punzo C. Gene therapy approaches for the treatment of retinal disorders. Discov Med. 2016; 22:221–229. PMID: 27875674. PMCID: 5142441.
52. Cotrim AP, Baum BJ. Gene therapy: some history, applications, problems, and prospects. Toxicol Pathol. 2008; 36:97–103. DOI: 10.1177/0192623307309925. PMID: 18337227.
Article
53. Joseph M, Trinh HM, Cholkar K, Pal D, Mitra AK. Recent perspectives on the delivery of biologics to back of the eye. Expert Opin Drug Deliv. 2017; 14:631–645. DOI: 10.1080/17425247.2016.1227783.
Article
54. Murphy N, Lynch K, Lohan P, Treacy O, Ritter T. Mesenchymal stem cell therapy to promote corneal allograft survival: current status and pathway to clinical translation. Curr Opin Organ Transplant. 2016; 21:559–567. DOI: 10.1097/MOT.0000000000000360. PMID: 27801687.
55. Clements LE, Garvican ER, Dudhia J, Smith RK. Modulation of mesenchymal stem cell genotype and phenotype by extracellular matrix proteins. Connect Tissue Res. 2016; 57:443–453. DOI: 10.1080/03008207.2016.1215442. PMID: 27448620.
Article
56. Harper MM, Grozdanic SD, Blits B, Kuehn MH, Zamzow D, Buss JE, Kardon RH, Sakaguchi DS. Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci. 2011; 52:4506–4515. DOI: 10.1167/iovs.11-7346. PMID: 21498611. PMCID: 3175938.
Article
57. Wang Y, Ying Y, Cui X. Effects on proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells engineered to express neurotrophic factors. Stem Cells Int. 2016; DOI: 10.1155/2016/1801340.
Article
58. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy. 2009; 11:377–391. DOI: 10.1080/14653240903080367. PMID: 19568970.
Article
59. Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010; 51:2051–2059. DOI: 10.1167/iovs.09-4509. PMCID: 2868400.
Article
60. Nadri S, Yazdani S, Arefian E, Gohari Z, Eslaminejad MB, Kazemi B, Soleimani M. Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neurosci Lett. 2013; 541:43–48. DOI: 10.1016/j.neulet.2012.12.055. PMID: 23403103.
Article
61. Yu S, Tanabe T, Dezawa M, Ishikawa H, Yoshimura N. Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem Biophys Res Commun. 2006; 344:1071–1079. DOI: 10.1016/j.bbrc.2006.03.231. PMID: 16643846.
Article
62. Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N. Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 2009; 3:63–70. DOI: 10.1016/j.scr.2009.02.006. PMID: 19411199.
Article
63. Weiss JN, Levy S, Malkin A. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: a preliminary report. Neural Regen Res. 2015; 10:982–988. DOI: 10.4103/1673-5374.158365. PMID: 26199618. PMCID: 4498363.
Article
64. Cocks G, Curran S, Gami P, Uwanogho D, Jeffries AR, Kathuria A, Lucchesi W, Wood V, Dixon R, Ogilvie C, Steckler T, Price J. The utility of patient specific induced pluripotent stem cells for the modelling of Autistic Spectrum Disorders. Psychopharmacology (Berl). 2014; 231:1079–1088. DOI: 10.1007/s00213-013-3196-4.
Article
65. Kang E, Wang X, Tippner-Hedges R, Ma H, Folmes CD, Gutierrez NM, Lee Y, Van Dyken C, Ahmed R, Li Y, Koski A, Hayama T, Luo S, Harding CO, Amato P, Jensen J, Battaglia D, Lee D, Wu D, Terzic A, Wolf DP, Huang T, Mitalipov S. Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell. 2016; 18:625–636. DOI: 10.1016/j.stem.2016.02.005. PMID: 27151456.
Article
66. Gundry MC, Brunetti L, Lin A, Mayle AE, Kitano A, Wagner D, Hsu JI, Hoegenauer KA, Rooney CM, Goodell MA, Nakada D. Highly Efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep. 2016; 17:1453–1461. DOI: 10.1016/j.celrep.2016.09.092. PMID: 27783956. PMCID: 5087995.
Article
67. Hu X. CRISPR/Cas9 system and its applications in human hematopoietic cells. Blood Cells Mol Dis. 2016; 62:6–12. DOI: 10.1016/j.bcmd.2016.09.003. PMID: 27736664.
Article
68. Zhu W, Gramlich OW, Laboissonniere L, Jain A, Sheffield VC, Trimarchi JM, Tucker BA, Kuehn MH. Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci U S A. 2016; 113:E3492–E3500. DOI: 10.1073/pnas.1604153113. PMID: 27274060. PMCID: 4922164.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr