1. Williams JA. Regulation of pancreatic acinar cell function. Curr Opin Gastroenterol. 2006; 22:498–504. PMID:
16891880.
Article
2. Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallem S. Aberrant CFTR-dependent HCO
3− transport in mutations associated with cystic fibrosis. Nature. 2001; 410:94–97. PMID:
11242048.
3. Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I. Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem. 1998; 273:17689–17695. PMID:
9651366.
Article
4. Boron WF, Chen L, Parker MD. Modular structure of sodiumcoupled bicarbonate transporters. J Exp Biol. 2009; 212:1697–1706. PMID:
19448079.
Article
5. Pushkin A, Kurtz I. SLC4 base (HCO
3−, CO
32−) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol. 2006; 290:F580–F599. PMID:
16461757.
6. Zhao H, Star RA, Muallem S. Membrane localization of H
+ and HCO
3− transporters in the rat pancreatic duct. J Gen Physiol. 1994; 104:57–85. PMID:
7964596.
7. Ishiguro H, Steward MC, Lindsay AR, Case RM. Accumulation of intracellular HCO
3− by Na
+-HCO
3− cotransport in interlobular ducts from guinea-pig pancreas. J Physiol. 1996; 495:169–178. PMID:
8866360.
8. Ishiguro H, Naruse S, Kitagawa M, Suzuki A, Yamamoto A, Hayakawa T, Case RM, Steward MC. CO
2 permeability and bicarbonate transport in microperfused interlobular ducts isolated from guineapig pancreas. J Physiol. 2000; 528:305–315. PMID:
11034620.
9. Gross E, Abuladze N, Pushkin A, Kurtz I, Cotton CU. The stoichiometry of the electrogenic sodium bicarbonate cotransporter pNBC1 in mouse pancreatic duct cells is 2 HCO
3−:1 Na
+. J Physiol. 2001; 531:375–382. PMID:
11230510.
10. Steward MC, Ishiguro H, Case RM. Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol. 2005; 67:377–409. PMID:
15709963.
Article
11. Yang D, Li Q, So I, Huang CL, Ando H, Mizutani A, Seki G, Mikoshiba K, Thomas PJ, Muallem S. IRBIT governs epithelial secretion in mice by antagonizing the WNK/SPAK kinase pathway. J Clin Invest. 2011; 121:956–965. PMID:
21317537.
Article
12. Lee SK, Boron WF, Parker MD. Relief of autoinhibition of the electrogenic Na-HCO
3 [corrected] cotransporter NBC
e1-B: role of IRBIT vs.amino-terminal truncation. Am J Physiol Cell Physiol. 2012; 302:C518–C526. PMID:
22012331.
13. Shirakabe K, Priori G, Yamada H, Ando H, Horita S, Fujita T, Fujimoto I, Mizutani A, Seki G, Mikoshiba K. IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na
+/HCO
3− cotransporter 1 (pNBC1). Proc Natl Acad Sci U S A. 2006; 103:9542–9547. PMID:
16769890.
14. Yang D, Shcheynikov N, Zeng W, Ohana E, So I, Ando H, Mizutani A, Mikoshiba K, Muallem S. IRBIT coordinates epithelial fluid and HCO
3− secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct. J Clin Invest. 2009; 119:193–202. PMID:
19033647.
15. Shenolikar S, Nairn AC. Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res. 1991; 23:1–121. PMID:
1847640.
16. Shenolikar S. Protein serine/threonine phosphatases?new avenues for cell regulation. Annu Rev Cell Biol. 1994; 10:55–86. PMID:
7888183.
Article
17. Wera S, Hemmings BA. Serine/threonine protein phosphatases. Biochem J. 1995; 311:17–29. PMID:
7575450.
Article
18. Aggen JB, Nairn AC, Chamberlin R. Regulation of protein phosphatase-1. Chem Biol. 2000; 7:R13–R23. PMID:
10662690.
Article
19. Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR, Kass RS. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002; 295:496–499. PMID:
11799244.
20. Darman RB, Flemmer A, Forbush B. Modulation of ion transport by direct targeting of protein phosphatase type 1 to the Na-K-Cl cotransporter. J Biol Chem. 2001; 276:34359–34362. PMID:
11466303.
Article
21. Flores-Hernandez J, Hernandez S, Snyder GL, Yan Z, Fienberg AA, Moss SJ, Greengard P, Surmeier DJ. D
1 dopamine receptor activation reduces GABAA receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. J Neurophysiol. 2000; 83:2996–3004. PMID:
10805695.
22. Furukawa T, Ogura T, Zheng YJ, Tsuchiya H, Nakaya H, Katayama Y, Inagaki N. Phosphorylation and functional regulation of ClC-2 chloride channels expressed in Xenopus oocytes by M cyclindependent protein kinase. J Physiol. 2002; 540:883–893. PMID:
11986377.
23. Rutledge E, Denton J, Strange K. Cell cycle- and swelling-induced activation of a Caenorhabditis elegans ClC channel is mediated by CeGLC-7alpha/beta phosphatases. J Cell Biol. 2002; 158:435–444. PMID:
12163466.
24. Ayllón V, Cayla X, García A, Fleischer A, Rebollo A. The anti-apoptotic molecules Bcl-xL and Bcl-w target protein phosphatase 1α to Bad. Eur J Immunol. 2002; 32:1847–1855. PMID:
12115603.
Article
25. Lee MG, Ahn W, Choi JY, Luo X, Seo JT, Schultheis PJ, Shull GE, Kim KH, Muallem S. Na
+-dependent transporters mediate HCO
3− salvage across the luminal membrane of the main pancreatic duct. J Clin Invest. 2000; 105:1651–1658. PMID:
10841524.
26. Gagnon KB, Delpire E. Multiple pathways for protein phosphatase 1 (PP1) regulation of Na-K-2Cl cotransporter (NKCC1) function: the N-terminal tail of the Na-K-2Cl cotransporter serves as a regulatory scaffold for Ste20-related proline/alanine-rich kinase (SPAK) and PP1. J Biol Chem. 2010; 285:14115–14121. PMID:
20223824.
27. Roy J, Cyert MS. Cracking the phosphatase code: docking interactions determine substrate specificity. Sci Signal. 2009; 2:re9. PMID:
19996458.
Article
28. Villa F, Goebel J, Rafiqi FH, Deak M, Thastrup J, Alessi DR, van Aalten DM. Structural insights into the recognition of substrates and activators by the OSR1 kinase. EMBO Rep. 2007; 8:839–845. PMID:
17721439.
Article
29. Gagnon KB, England R, Diehl L, Delpire E. Apoptosis-associated tyrosine kinase scaffolding of protein phosphatase 1 and SPAK reveals a novel pathway for Na-K-2C1 cotransporter regulation. Am J Physiol Cell Physiol. 2007; 292:C1809–C1815. PMID:
17267545.
Article
30. Bergeron MJ, Frenette-Cotton R, Carpentier GA, Simard MG, Caron L, Isenring P. Phosphoregulation of K
+-Cl
− cotransporter 4 during changes in intracellular Cl and cell volume. J Cell Physiol. 2009; 219:787–796. PMID:
19206159.
31. Devogelaere B, Nadif Kasri N, Derua R, Waelkens E, Callewaert G, Missiaen L, Parys JB, De Smedt H. Binding of IRBIT to the IP
3 receptor: determinants and functional effects. Biochem Biophys Res Commun. 2006; 343:49–56. PMID:
16527252.
32. Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem. 2000; 275:16795–16801. PMID:
10828064.
Article
33. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science. 2001; 293:1107–1112. PMID:
11498583.
Article
34. Vitari AC, Deak M, Morrice NA, Alessi DR. The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J. 2005; 391:17–24. PMID:
16083423.
Article
35. Gagnon KB, England R, Delpire E. Volume sensitivity of cation-Cl
− cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4. Am J Physiol Cell Physiol. 2006; 290:C134–C142. PMID:
15930150.
36. He G, Wang HR, Huang SK, Huang CL. Intersectin links WNK kinases to endocytosis of ROMK1. J Clin Invest. 2007; 117:1078–1087. PMID:
17380208.
Article