Int J Stem Cells.  2022 Nov;15(4):384-394. 10.15283/ijsc21240.

NBCe1 Regulates Odontogenic Differentiation of Human Dental Pulp Stem Cells via NF-κB

Affiliations
  • 1Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
  • 2Department of Stomatology, Zhangye People’s Hospital Affiliated to Hexi University, Zhangye Gansu, China

Abstract

Background and Objectives
Dental pulp stem cells (DPSCs) play an important role in the repair of tooth injuries. Electrogenic sodium bicarbonate cotransporter 1 (NBCe1) is a Na -coupled HCO3 transporter encoded by the solute carrier 4A4 (SLC4A4) gene and plays a crucial role in maintaining the pH of DPSCs. Our previous research confirmed that NBCe1 is highly expressed in odontoblasts during the development of the tooth germ. Therefore, in this study, we aimed to investigate the effect of NBCe1 on odontogenic differentiation of DPSCs and further clarify the underlying mechanisms.
Methods and Results
DPSCs were isolated and identified, and the selective NBCe1 inhibitor S0859 was used to treat DPSCs. We used a cell counting Kit-8 assay to detect cell proliferative ability, and intracellular pH was assessed using confocal microscopy. Odontogenic differentiation of DPSCs was analyzed using real-time PCR and Alizarin Red S staining, and the NF-κB pathway was assessed using western blotting. Our results indicated that 10 μM S0859 was the optimal concentration for DPSC induction. Intracellular pH was decreased upon treatment with S0859. The mRNA expressions of DSPP, DMP1, RUNX2, OCN, and OPN were upregulated in the NBCe1 inhibited group compared to the controls. Moreover, NBCe1 inhibition significantly activated the NF-κB pathway, and a NF-κB inhibitor reduced the effect of NBCe1 on DPSC differentiation.
Conclusions
NBCe1 inhibition significantly promotes odontogenic differentiation of DPSCs, and this process may be regulated by activating the NF-κB signaling pathway.

Keyword

Dental pulp stem cells; NBCe1; Intracellular pH; Odontogenic differentiation; NF-κB

Figure

  • Fig. 1 Characterization of human dental pulp stem cells (DPSCs). (A) Primary DPSCs showed typical fibroblast or spindle morphology. (B) DPSCs were fused and grown in a swirl on the 13th day of primary culture (Scale bar=50 μm). (C) Control group for alizarin red S staining. (D) Alizarin red S staining of mineralized nodules after osteogenic-induced culture (Scale bar=200 μm). (E) Control group for oil red O staining. (F) Oil red O positive staining after adipogenic differentiation (Scale bar=200 μm). (G) Flow cytometry assay showing DPSCs with positive expression for CD44, CD73, CD90 and CD105, and negative expression CD34, CD11b, CD19, CD45 and HLA-DR.

  • Fig. 2 Effect of S0859 on prolifera-tion and intracellular pH of DPSCs. (A) A CCK-8 assay revealed that low S0859 concentration had little effect on DPSCs viability, and a high dose inhibited proliferation (*p<0.05). (B) Standard curve for pH and its effect on DPSCs obtained using BCECF-AM. The pH/fluorescence ratio (530/640) conforms to the linear regression equation y=0.1897x+5.9766 (R2= 0.9903). (C) Effect of S0859 on intracellular pH of DPSCs observed using BCECF-AM. The intracellular pH of DPSCs treated with S0859 decreased compared to the control group (*p< 0.05).

  • Fig. 3 NBCe1 inhibition promoted the odontogenic differentiation of DPSCs. (A) Real-time PCR indicated higher expressions of odontogenic genes (DMP1, DSPP, Runx2, OCN and OPN) in the MM+S0859 group compared to the NC or MM groups (**p<0.01; *p<0.05). (B) Alizarin red staining showed obvious mineralized nodules in the MM+S0859 group compared to the control group (Scale bar=50 μm). (C) A CPC assay quantified the mineralized nodules and revealed that the concentration of mineralized nodules was higher in the MM+S0859 group compared to the MM group (***p<0.001, *p<0.05). (D) Protein expression levels of p65 and p-p65. (E) The ratio of p-p65/p65 in the S0859-treated group was higher compared to the NC and MM group (*p<0.05, **p<0.01). NC: control medium, MM: mineralized-inducing medium, CPC: cetylpyridinium chloride.

  • Fig. 4 Effect of NF-κB inhibitor on the odontogenic differentiation of DPSCs treated with S0859. (A) A Real-time PCR assay demonstrated that the mRNA expression levels of DSPP, DMP1, Runx2, OCN, and OPN in the S0859+PDTC group were decreased compared to that in the S0859 group (*p<0.05, **p<0.01). (B) Alizarin red staining of mineralized nodules was more obvious in the S0859 group than in the S0859+PDTC group (Scale bar=50 μm). (C) CPC quantification showed that the concentration of mineralized nodules in the S0859 group was higher than in the S0859+PDTC group (*p<0.05, **p<0.01). (D) Protein levels of p65 and p-p65 in the MM group, MM+S0859 group, MM+PDTC group, and MM+S0859+PDTC group. (E) Quantification of the p-p65/p65 ratios after inhibition of the NF-κB pathway (*p<0.05, **p<0.01). NC: control medium, MM: mineralized-inducing medium, CPC: cetylpyridinium chloride.

  • Fig. 5 Schematic diagram of the pro-posed mechanism for NBCe1 regulation of the odontogenic differentia-tion of DPSCs. P: phosphorylation.


Reference

References

1. Arana-Chavez VE, Massa LF. 2004; Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol. 36:1367–1373. DOI: 10.1016/j.biocel.2004.01.006. PMID: 15147714. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=2442586798&origin=inward.
Article
2. Ma D, Gao J, Yue J, Yan W, Fang F, Wu B. 2012; Changes in proliferation and osteogenic differentiation of stem cells from deep caries in vitro. J Endod. 38:796–802. DOI: 10.1016/j.joen.2012.02.014. PMID: 22595115. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84861202351&origin=inward.
Article
3. Sloan AJ, Waddington RJ. 2009; Dental pulp stem cells: what, where, how? Int J Paediatr Dent. 19:61–70. DOI: 10.1111/j.1365-263X.2008.00964.x. PMID: 19120509. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=57849148621&origin=inward.
Article
4. Hirose Y, Yamaguchi M, Kawabata S, Murakami M, Nakashima M, Gotoh M, Yamamoto T. 2016; Effects of extracellular pH on dental pulp cells in vitro. J Endod. 42:735–741. DOI: 10.1016/j.joen.2016.01.019. PMID: 26951958. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84959487035&origin=inward.
5. Gao W, Zhang H, Chang G, Xie Z, Wang H, Ma L, Han Z, Li Q, Pang T. 2014; Decreased intracellular pH induced by cariporide differentially contributes to human umbilical cord-derived mesenchymal stem cells differentiation. Cell Physiol Biochem. 33:185–194. DOI: 10.1159/000356661. PMID: 24481225. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84893171367&origin=inward.
Article
6. Hojo S, Komatsu M, Okuda R, Takahashi N, Yamada T. 1994; Acid profiles and pH of carious dentin in active and arrested lesions. J Dent Res. 73:1853–1857. DOI: 10.1177/00220345940730121001. PMID: 7814758. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0028704327&origin=inward.
Article
7. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. 1995; Physical and chemical properties of a new root-end filling material. J Endod. 21:349–353. DOI: 10.1016/S0099-2399(06)80967-2. PMID: 7499973. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0029330853&origin=inward.
Article
8. Casey JR, Grinstein S, Orlowski J. 2010; Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 11:50–61. DOI: 10.1038/nrm2820. PMID: 19997129. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=72949121897&origin=inward.
Article
9. Boron WF, Chen L, Parker MD. 2009; Modular structure of sodium-coupled bicarbonate transporters. J Exp Biol. 212(Pt 11):1697–1706. DOI: 10.1242/jeb.028563. PMID: 19448079. PMCID: PMC2683013. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=66449097951&origin=inward.
Article
10. Chen GS, Lee SP, Huang SF, Chao SC, Chang CY, Wu GJ, Li CH, Loh SH. 2018; Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells. Arch Oral Biol. 90:19–26. DOI: 10.1016/j.archoralbio.2018.02.018. PMID: 29524788. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042944907&origin=inward.
Article
11. Yang J, Lu X, Liu S, Zhao S. 2020; The involvement of genes related to bile secretion pathway in rat tooth germ development. J Mol Histol. 51:99–107. DOI: 10.1007/s10735-020-09861-0. PMID: 32095972. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081109604&origin=inward.
Article
12. Ch'en FF, Villafuerte FC, Swietach P, Cobden PM, Vaughan-Jones RD. 2008; S0859, an N-cyanosulphonamide inhibitor of sodium-bicarbonate cotransport in the heart. Br J Pharmacol. 153:972–982. DOI: 10.1038/sj.bjp.0707667. PMID: 18204485. PMCID: PMC2267275. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=40149083427&origin=inward.
13. Li J, Ju Y, Liu S, Fu Y, Zhao S. 2021; Exosomes derived from lipopolysaccharide-preconditioned human dental pulp stem cells regulate Schwann cell migration and differentiation. Connect Tissue Res. 62:277–286. DOI: 10.1080/03008207.2019.1694010. PMID: 31769319. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075743328&origin=inward.
Article
14. Busa WB, Nuccitelli R. 1984; Metabolic regulation via intracellular pH. Am J Physiol. 246(4 Pt 2):R409–R438. DOI: 10.1152/ajpregu.1984.246.4.R409. PMID: 6326601. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0000672457&origin=inward.
Article
15. Webb BA, Chimenti M, Jacobson MP, Barber DL. 2011; Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer. 11:671–677. DOI: 10.1038/nrc3110. PMID: 21833026. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=81155159685&origin=inward.
Article
16. Charruyer A, Ghadially R. 2018; Influence of pH on skin stem cells and their differentiation. Curr Probl Dermatol. 54:71–78. DOI: 10.1159/000489520. PMID: 30130775. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052236593&origin=inward.
Article
17. Liu Y, Wang DK, Chen LM. 2012; The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod. 86:99. DOI: 10.1095/biolreprod.111.096826. PMID: 22262691. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864020925&origin=inward.
18. Lacruz RS, Nanci A, White SN, Wen X, Wang H, Zalzal SF, Luong VQ, Schuetter VL, Conti PS, Kurtz I, Paine ML. 2010; The sodium bicarbonate cotransporter (NBCe1) is essential for normal development of mouse dentition. J Biol Chem. 285:24432–24438. DOI: 10.1074/jbc.M110.115188. PMID: 20529845. PMCID: PMC2915679. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77955302357&origin=inward.
Article
19. Ritchie H. 2018; The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein. Int J Oral Sci. 10:31. DOI: 10.1038/s41368-018-0035-9. PMID: 30393383. PMCID: PMC6215839. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85056277149&origin=inward.
Article
20. Narayanan K, Ramachandran A, Hao J, He G, Park KW, Cho M, George A. 2003; Dual functional roles of dentin matrix protein 1. Implications in biomineralization and gene transcription by activation of intracellular Ca2+ store. J Biol Chem. 278:17500–17508. DOI: 10.1074/jbc.M212700200. PMID: 12615915. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0037931728&origin=inward.
21. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. 2000; Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 97:13625–13630. DOI: 10.1073/pnas.240309797. PMID: 11087820. PMCID: PMC17626. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034610376&origin=inward.
22. Oeckinghaus A, Hayden MS, Ghosh S. 2011; Crosstalk in NF-κB signaling pathways. Nat Immunol. 12:695–708. DOI: 10.1038/ni.2065. PMID: 21772278. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80051987703&origin=inward.
Article
23. He X, Jiang W, Luo Z, Qu T, Wang Z, Liu N, Zhang Y, Cooper PR, He W. 2017; IFN-γ regulates human dental pulp stem cells behavior via NF-κB and MAPK signaling. Sci Rep. 7:40681. DOI: 10.1038/srep40681. PMID: 28098169. PMCID: PMC5241669. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009911180&origin=inward.
Article
24. Sonoda S, Mei YF, Atsuta I, Danjo A, Yamaza H, Hama S, Nishida K, Tang R, Kyumoto-Nakamura Y, Uehara N, Kukita T, Nishimura F, Yamaza T. 2018; Exogenous nitric oxide stimulates the odontogenic differentiation of rat dental pulp stem cells. Sci Rep. 8:3419. DOI: 10.1038/s41598-018-21183-6. PMID: 29467418. PMCID: PMC5821879. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042384991&origin=inward.
Article
25. Feng X, Feng G, Xing J, Shen B, Li L, Tan W, Xu Y, Liu S, Liu H, Jiang J, Wu H, Tao T, Gu Z. 2013; TNF-α triggers osteogenic differentiation of human dental pulp stem cells via the NF-κB signalling pathway. Cell Biol Int. 37:1267–1275. DOI: 10.1002/cbin.10141. PMID: 23765556. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84888430727&origin=inward.
Article
26. Wang Y, Yan M, Fan Z, Ma L, Yu Y, Yu J. 2014; Mineral trioxide aggregate enhances the odonto/osteogenic capacity of stem cells from inflammatory dental pulps via NF-κB pathway. Oral Dis. 20:650–658. DOI: 10.1111/odi.12183. PMID: 24102926. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84908323932&origin=inward.
Article
27. Snead CM, Smith SM, Sadeghein N, Lacruz RS, Hu P, Kurtz I, Paine ML. 2011; Identification of a pH-responsive DNA region upstream of the transcription start site of human NBCe1-B. Eur J Oral Sci. 119(Suppl 1):136–141. DOI: 10.1111/j.1600-0722.2011.00867.x. PMID: 22243239. PMCID: PMC3374727. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84862920660&origin=inward.
Article
28. Lu YC, Chen H, Fok KL, Tsang LL, Yu MK, Zhang XH, Chen J, Jiang X, Chung YW, Ma AC, Leung AY, Huang HF, Chan HC. 2012; CFTR mediates bicarbonate-dependent activation of miR-125b in preimplantation embryo development. Cell Res. 22:1453–1466. DOI: 10.1038/cr.2012.88. PMID: 22664907. PMCID: PMC3463266. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84867045888&origin=inward.
Article
29. Luo AJ, Tan J, He LY, Jiang XZ, Jiang ZQ, Zeng Q, Yao K, Xue J. 2019; Suppression of Tescalcin inhibits growth and metastasis in renal cell carcinoma via downregulating NHE1 and NF-kB signaling. Exp Mol Pathol. 107:110–117. DOI: 10.1016/j.yexmp.2018.12.004. PMID: 30594602. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85061660883&origin=inward.
Article
30. Bruck R, Schey R, Aeed H, Hochman A, Genina O, Pines M. 2004; A protective effect of pyrrolidine dithiocarbamate in a rat model of liver cirrhosis. Liver Int. 24:169–176. DOI: 10.1111/j.1478-3231.2004.00900.x. PMID: 15078482. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=2342558077&origin=inward.
Article
31. Wang M, Yang F, Qiu R, Zhu M, Zhang H, Xu W, Shen B, Zhu W. 2018; The role of mmu-miR-155-5p-NF-κB signaling in the education of bone marrow-derived mesenchymal stem cells by gastric cancer cells. Cancer Med. 7:856–868. DOI: 10.1002/cam4.1355. PMID: 29441735. PMCID: PMC5852371. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042018182&origin=inward.
Article
32. Jiang CY, Wang W, Tang JX, Yuan ZR. 2013; The adipocytokine resistin stimulates the production of proinflammatory cytokines TNF-α and IL-6 in pancreatic acinar cells via NF-κB activation. J Endocrinol Invest. 36:986–992. DOI: 10.3275/9002. PMID: 23765438. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84891707558&origin=inward.
33. Park SY, Lee YJ, Cho EJ, Shin CY, Sohn UD. 2015; Intrinsic resistance triggered under acid loading within normal esophageal epithelial cells: NHE1- and ROS-mediated survival. J Cell Physiol. 230:1503–1514. DOI: 10.1002/jcp.24896. PMID: 25522216. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84925644928&origin=inward.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr