Cancer Res Treat.  2017 Oct;49(4):1077-1087. 10.4143/crt.2016.301.

Identification of Diverse Adenosine-to-Inosine RNA Editing Subtypes in Colorectal Cancer

Affiliations
  • 1Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Korea. kimty@snu.ac.kr
  • 2Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
  • 3Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.

Abstract

PURPOSE
RNA editing generates protein diversity by altering RNA sequences in coding regions without changing the overall DNA sequence. Adenosine-to-inosine (A-to-I) RNA editing events have recently been reported in some types of cancer, but they are rare in human colorectal cancer (CRC). Therefore, this study was conducted to identify diverse RNA editing in CRC.
MATERIALS AND METHODS
We compared transcriptome data of 39 CRC samples and paired adjacent tissues from The Cancer Genome Atlas database to identify RNA editing patterns in CRC, focusing on canonical A-to-I RNA edits in coding sequence regions. We investigated nonsynonymous RNA editing patterns by comparing tumor and normal tissue transcriptome data.
RESULTS
The number of RNA edits varied from 12 to 42 per sample. We also observed that hypoand hyper-RNA editing patterns were distinguishable within the samples. We found 10 recurrent nonsynonymous RNA editing candidates in nine genes (PDLIM, NEIL1, SRP9, GLI1, APMAP, IGFBP7, ZNF358, COPA, and ZNF587B) and validated some by Sanger sequencing and the inosine chemical erasing assay. We further showed that editing at these positions was performed by the adenosine deaminase acting on RNA 1 enzyme. Most of these genes are hypoedited in CRC, but editing of GLI1 was increased in cancer tissues compared with normal tissues.
CONCLUSION
Our results show that nonsynonymous RNA editing patterns can be used to identify CRC patients and could serve as novel biomarkers for CRC.

Keyword

RNA editing; Colorectal neoplasms; Transcriptome sequencing; GLI family zinc finger 1; Adenosine deaminase

MeSH Terms

Adenosine Deaminase
Base Sequence
Biomarkers
Clinical Coding
Colorectal Neoplasms*
Genome
Humans
Inosine
RNA Editing*
RNA*
Transcriptome
Adenosine Deaminase
Biomarkers
Inosine
RNA

Figure

  • Fig. 1. The pattern of nonsynonymous RNA editing. (A) Overall number of nonsynonymous A-to-I RNA editing sites in each sample. The number of samples was 39. (B) Percentage of hyper- and hypo-RNA editing. Hyperediting was defined as editing in more than 10% in tumor than normal tissue. Hypoediting was defined as editing of less than 10% in tumor than normal tissue.

  • Fig. 2. Hypoediting sites in colorectal cancer. RNA editing detected among 39 paired specimens of colorectal tumor and adjacent normal tissues. The percentage of RNA editing was obtained from the The Cancer Genome Atlas transcriptome dataset. The p-value was calculated by a Student’s t test. (A, B) IGFBP7 (chr4:57976234, c.A284G, p.K95R) and (chr4:57976286, c.A232G, p.R78). (C) COPA (chr1:160302244, c.A490G, p.I164V). (D) ZNF358 (chr19:7585273, c.A1145G, p.K382R).

  • Fig. 3. RNA editing of GLI1 is hyperedited in colorectal cancer. (A) GLI1 RNA editing (chr12:57864624, c.A2101G:p.R701G) detected in The Cancer Genome Atlas transcriptome data. (B) GLI1 RNA editing validated in gDNA (top) and cDNA (bottom) by Sanger sequencing in SNU-254 cells. (C) cDNA of normal and tumor tissue was amplified, and sequencing was performed by Sanger sequencing. (D) GLI1 editing percentage; the percentage of editing was determined using pyrosequencing. n=10; the p-value was calculated by a Student’s t test (*p < 0.05).

  • Fig. 4. Validation of the editing candidates. (A) RNA editing of SRP9 (chr1:225974614) and NEIL1 (chr15:75646086) was validated in gDNA (top) and cDNA (bottom) by Sanger sequencing in SNU-81 cells. (B) The top panels show the chromatograms of regions amplified from gDNA in SNU-81 cells. The middle panels show the chromatograms of cDNA amplified from nontreated cyanoethylation. Cyanoethylation treated RNA was amplified and their chromatograms are displayed along the bottom line. (C) Sanger sequencing results of SRP9 and NEIL1 from siRNA control (top) and adenosine deaminase acting on RNA 1 (ADAR1; bottom) treated SNU-81 cells. (D) The siRNA knockdown efficiency of ADAR1 was tested by real-time quantitative reverse transcription–polymerase chain reaction (left) and western blot (right).


Reference

References

1. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007; 446:153–8.
Article
2. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012; 487:330–7.
3. Keegan LP, Gallo A, O'Connell MA. The many roles of an RNA editor. Nat Rev Genet. 2001; 2:869–78.
Article
4. Nishikura K. Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol. 2006; 7:919–31.
Article
5. Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010; 79:321–49.
Article
6. Ju YS, Kim JI, Kim S, Hong D, Park H, Shin JY, et al. Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals. Nat Genet. 2011; 43:745–52.
Article
7. Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM, et al. Widespread RNA and DNA sequence differences in the human transcriptome. Science. 2011; 333:53–8.
Article
8. Ramaswami G, Li JB. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res. 2014; 42:D109–13.
Article
9. Kiran A, Baranov PV. DARNED: a DAtabase of RNa EDiting in humans. Bioinformatics. 2010; 26:1772–6.
Article
10. Kleinman CL, Adoue V, Majewski J. RNA editing of protein sequences: a rare event in human transcriptomes. RNA. 2012; 18:1586–96.
Article
11. Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S, et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 2007; 17:1586–95.
Article
12. Cenci C, Barzotti R, Galeano F, Corbelli S, Rota R, Massimi L, et al. Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation. J Biol Chem. 2008; 283:7251–60.
13. Maas S, Patt S, Schrey M, Rich A. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci U S A. 2001; 98:14687–92.
Article
14. Chen L, Li Y, Lin CH, Chan TH, Chow RK, Song Y, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat Med. 2013; 19:209–16.
Article
15. Han SW, Kim HP, Shin JY, Jeong EG, Lee WC, Kim KY, et al. RNA editing in RHOQ promotes invasion potential in colorectal cancer. J Exp Med. 2014; 211:613–21.
Article
16. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012; 22:568–76.
Article
17. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010; 38:e164.
Article
18. Sakurai M, Yano T, Kawabata H, Ueda H, Suzuki T. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nat Chem Biol. 2010; 6:733–40.
Article
19. Oh JH, Ku JL, Yoon KA, Kwon HJ, Kim WH, Park HS, et al. Establishment and characterization of 12 human colorectalcarcinoma cell lines. Int J Cancer. 1999; 81:902–10.
Article
20. Han L, Diao L, Yu S, Xu X, Li J, Zhang R, et al. The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell. 2015; 28:515–28.
Article
21. Maas S, Rich A, Nishikura K. A-to-I RNA editing: recent news and residual mysteries. J Biol Chem. 2003; 278:1391–4.
Article
22. Piskol R, Peng Z, Wang J, Li JB. Lack of evidence for existence of noncanonical RNA editing. Nat Biotechnol. 2013; 31:19–20.
Article
23. Yeo J, Goodman RA, Schirle NT, David SS, Beal PA. RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1. Proc Natl Acad Sci U S A. 2010; 107:20715–9.
Article
24. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature. 2009; 461:809–13.
Article
25. Verhagen HJ, de Leeuw DC, Roemer MG, Denkers F, Pouwels W, Rutten A, et al. IGFBP7 induces apoptosis of acute myeloid leukemia cells and synergizes with chemotherapy in suppression of leukemia cell survival. Cell Death Dis. 2014; 5:e1300.
Article
26. Liu L, Yang Z, Zhang W, Yan B, Gu Q, Jiao J, et al. Decreased expression of IGFBP7 was a poor prognosis predictor for gastric cancer patients. Tumour Biol. 2014; 35:8875–81.
Article
27. Chan TH, Lin CH, Qi L, Fei J, Li Y, Yong KJ, et al. A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut. 2014; 63:832–43.
Article
28. Shimokawa T, Rahman MF, Tostar U, Sonkoly E, Stahle M, Pivarcsi A, et al. RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling. RNA Biol. 2013; 10:321–33.
Article
29. Bar EE, Chaudhry A, Farah MH, Eberhart CG. Hedgehog signaling promotes medulloblastoma survival via Bc/II. Am J Pathol. 2007; 170:347–55.
30. Akiyoshi T, Nakamura M, Koga K, Nakashima H, Yao T, Tsuneyoshi M, et al. GLI1, downregulated in colorectal cancers, inhibits proliferation of colon cancer cells involving Wnt signalling activation. Gut. 2006; 55:991–9.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr