1. International Agency for Research on Cancer. Globocan 2012: estimated cancer incidence, mortality, and prevalence worldwide in 2012 [Internet]. Lyon: International Agency for Research on Cancer;2015. [cited 2016 Jul 11]. Available from:
http://globocan.iarc.fr/Default.aspx.
2. Varghese C, Carlos MC, Shin HR. Cancer burden and control in the Western Pacific region: challenges and opportunities. Ann Glob Health. 2014; 80:358–69.
3. Oh CM, Won YJ, Jung KW, Kong HJ, Cho H, Lee JK, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2013. Cancer Res Treat. 2016; 48:436–50.
Article
4. Yang J, Hu Z, Xu Y, Shen J, Niu J, Hu X, et al. Interleukin-1B gene promoter variants are associated with an increased risk of gastric cancer in a Chinese population. Cancer Lett. 2004; 215:191–8.
Article
5. International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Schistosomes, liver flukes and Helicobacter pylori. Lyon: IARC Press;1994.
6. Zaidi SF. Helicobacter pylori associated Asian enigma: does diet deserve distinction? World J Gastrointest Oncol. 2016; 8:341–50.
7. Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer. J Clin Invest. 2007; 117:60–9.
Article
8. Garte S. Inflammation, atrophy, and gastric cancer. In : Wild CP, Vineis P, Garte S, editors. Molecular epidemiology of chronic diseases. West Sussex. West Sussex: John Wiley & Sons, Ltd.;2008. p. 55–69.
9. Katoh M. Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther. 2007; 6:832–9.
10. Togawa S, Joh T, Itoh M, Katsuda N, Ito H, Matsuo K, et al. Interleukin-2 gene polymorphisms associated with increased risk of gastric atrophy from Helicobacter pylori infection. Helicobacter. 2005; 10:172–8.
11. Tollefsbol TO. Dietary epigenetics in cancer and aging. Cancer Res Treat. 2014; 159:257–67.
Article
12. Woo HD, Park S, Oh K, Kim HJ, Shin HR, Moon HK, et al. Diet and cancer risk in the Korean population: a meta-analysis. Asian Pac J Cancer Prev. 2014; 15:8509–19.
Article
13. Milne AN, Carneiro F, O'Morain C, Offerhaus GJ. Nature meets nurture: molecular genetics of gastric cancer. Hum Genet. 2009; 126:615–28.
Article
14. Ahn Y, Kwon E, Shim JE, Park MK, Joo Y, Kimm K, et al. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur J Clin Nutr. 2007; 61:1435–41.
Article
15. Park MK, Song Y, Joung H, Li SJ, Paik HY. Establishment of an isoflavone database for usual Korean foods and evaluation of isoflavone intake among Korean children. Asia Pac J Clin Nutr. 2007; 16:129–39.
16. Willett W. Implications of total energy intake for epidemiologic analyses. Willett W, editor. Nutritional epidemiology. 3rd ed. New York: Oxford University Press;2013. p. 247–71.
17. Lesinski GB, Reville PK, Mace TA, Young GS, Ahn-Jarvis J, Thomas-Ahner J, et al. Consumption of soy isoflavone enriched bread in men with prostate cancer is associated with reduced proinflammatory cytokines and immunosuppressive cells. Cancer Prev Res (Phila). 2015; 8:1036–44.
Article
18. World Cancer Research Fund; American Institute for Cancer
Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. 2nd ed. Washington, DC: World Cancer Research Fund, American Institute for Cancer Research;2007. p. 265.
19. Wu J, Lu Y, Ding YB, Ke Q, Hu ZB, Yan ZG, et al. Promoter polymorphisms of IL2, IL4, and risk of gastric cancer in a highrisk Chinese population. Mol Carcinog. 2009; 48:626–32.
Article
20. Tezuka H, Imai S. Immunomodulatory effects of soybeans and processed soy food compounds. Recent Pat Food Nutr Agric. 2015; 7:92–9.
Article
21. Handayani R, Rice L, Cui Y, Medrano TA, Samedi VG, Baker HV, et al. Soy isoflavones alter expression of genes associated with cancer progression, including interleukin-8, in androgenindependent PC-3 human prostate cancer cells. J Nutr. 2006; 136:75–82.
Article
22. Ko KP, Park SK, Park B, Yang JJ, Cho LY, Kang C, et al. Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean Multicenter Cancer Cohort. Cancer Epidemiol Biomarkers Prev. 2010; 19:1292–300.
Article
23. Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA. 2008; 299:2423–36.
24. Seruga B, Zhang H, Bernstein LJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer. 2008; 8:887–99.
Article
25. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest. 2000; 117:1162–72.
Article
26. Burada F, Angelescu C, Mitrut P, Ciurea T, Cruce M, Saftoiu A, et al. Interleukin-4 receptor −3223C→T polymorphism is associated with increased gastric adenocarcinoma risk. Can J Gastroenterol. 2012; 26:532–6.
Article
27. Hu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A. Gastric cancer: classification, histology and application of molecular pathology. J Gastrointest Oncol. 2012; 3:251–61.
28. Epplein M, Nomura AM, Hankin JH, Blaser MJ, Perez-Perez G, Stemmermann GN, et al. Association of Helicobacter pylori infection and diet on the risk of gastric cancer: a case-control study in Hawaii. Cancer Causes Control. 2008; 19:869–77.
Article
29. Wang Y, Shu Y, Jiang H, Sun B, Ma Z, Tang W. Lack of association between interleukin-2 (IL-2) gene rs2069762 polymorphism and cancer risk: a meta-analysis. Int J Clin Exp Med. 2015; 8:12557–65.
30. Ko KP, Park SK, Cho LY, Gwack J, Yang JJ, Shin A, et al. Soybean product intake modifies the association between interleukin-10 genetic polymorphisms and gastric cancer risk. J Nutr. 2009; 139:1008–12.
Article