Clin Endosc.  2017 Sep;50(5):424-428. 10.5946/ce.2017.143.

Role of Advanced Endoscopic Imaging Techniques in the Management of Inflammatory Bowel Disease

Affiliations
  • 1Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea. dandy813@knu.ac.kr

Abstract

Endoscopy plays a crucial role in the management of inflammatory bowel disease (IBD) in terms of diagnosis, monitoring of mucosal status, and surveillance of colitis-associated neoplasia. Mucosal healing evaluated by endoscopy has been recognized as the target of treatment in the era of powerful biologics therapy. The optimal modality for identifying dysplasia in IBD has yet to be well defined. Increasing progress has recently been made in endoscopic technologies to more accurately assess mucosal inflammation and more effectively detect dysplasia. Here we review the data of advanced endoscopic imaging techniques such as chromoendoscopy, virtual chromoendoscopy, endocytoscopy, and confocal laser endomicroscopy in the management of IBD.

Keyword

Chromoendoscopy; Endocytoscopy; Confocal laser endomicroscopy; Inflammatory bowel disease

MeSH Terms

Biological Products
Diagnosis
Endoscopy
Inflammation
Inflammatory Bowel Diseases*
Biological Products

Cited by  1 articles

Advanced neoplasia detection using chromoendoscopy and white light colonoscopy for surveillance in patients with inflammatory bowel disease
Kyeong Ok Kim, Michael V. Chiorean
Intest Res. 2020;18(4):438-446.    doi: 10.5217/ir.2019.00090.


Reference

1. Mowat C, Cole A, Windsor A, et al. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2011; 60:571–607.
Article
2. Dignass A, Eliakim R, Magro F, et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 1: definitions and diagnosis. J Crohns Colitis. 2012; 6:965–990.
Article
3. Lichtenstein GR, Hanauer SB, Sandborn WJ; American College of Gastroenterology. Management of Crohn’s disease in adults. Am J Gastroenterol. 2009; 104:465–483. quiz 464, 484.
Article
4. Frøslie KF, Jahnsen J, Moum BA, Vatn MH; IBSEN Group. Mucosal healing in inflammatory bowel disease: results from a Norwegian population-based cohort. Gastroenterology. 2007; 133:412–422.
Article
5. Colombel JF, Rutgeerts P, Reinisch W, et al. Early mucosal healing with infliximab is associated with improved long-term clinical outcomes in ulcerative colitis. Gastroenterology. 2011; 141:1194–1201.
Article
6. Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology. 2011; 140:1807–1816.
Article
7. Rutter M, Saunders B, Wilkinson K, et al. Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology. 2004; 126:451–459.
Article
8. Rubin DT, Huo D, Kinnucan JA, et al. Inflammation is an independent risk factor for colonic neoplasia in patients with ulcerative colitis: a case-control study. Clin Gastroenterol Hepatol. 2013; 11:1601–1608. e1-e4.
Article
9. Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001; 48:526–535.
Article
10. Itzkowitz SH, Harpaz N. Diagnosis and management of dysplasia in patients with inflammatory bowel diseases. Gastroenterology. 2004; 126:1634–1648.
Article
11. Tytgat GN, Dhir V, Gopinath N. Endoscopic appearance of dysplasia and cancer in inflammatory bowel disease. Eur J Cancer. 1995; 31A:1174–1177.
Article
12. Neumann H, Mönkemüller K, Günther C, Atreya R, Vieth M, Neurath MF. Advanced endoscopic imaging for diagnosis of Crohn’s disease. Gastroenterol Res Pract. 2012; 2012:301541.
Article
13. Hurlstone DP, Sanders DS, Lobo AJ, McAlindon ME, Cross SS. Indigo carmine-assisted high-magnification chromoscopic colonoscopy for the detection and characterisation of intraepithelial neoplasia in ulcerative colitis: a prospective evaluation. Endoscopy. 2005; 37:1186–1192.
Article
14. Kiesslich R, Fritsch J, Holtmann M, et al. Methylene blue-aided chromoendoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis. Gastroenterology. 2003; 124:880–888.
Article
15. Picco MF, Pasha S, Leighton JA, et al. Procedure time and the determination of polypoid abnormalities with experience: implementation of a chromoendoscopy program for surveillance colonoscopy for ulcerative colitis. Inflamm Bowel Dis. 2013; 19:1913–1920.
16. Wu L, Li P, Wu J, Cao Y, Gao F. The diagnostic accuracy of chromoendoscopy for dysplasia in ulcerative colitis: meta-analysis of six randomized controlled trials. Colorectal Dis. 2012; 14:416–420.
Article
17. Farraye FA, Odze RD, Eaden J, Itzkowitz SH. AGA technical review on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology. 2010; 138:746–774. e1-e4; quiz e12-e13.
Article
18. Cairns SR, Scholefield JH, Steele RJ, et al. Guidelines for colorectal cancer screening and surveillance in moderate and high risk groups (update from 2002). Gut. 2010; 59:666–689.
Article
19. Ibarra-Palomino J, Barreto-Zúñiga R, Elizondo-Rivera J, Bobadilla-Díaz J, Villegas-Jiménez A. [Application of chromoendoscopy to evaluate the severity and interobserver variation in chronic non-specific ulcerative colitis]. Rev Gastroenterol Mex. 2002; 67:236–240.
20. Matsumoto T, Kuroki F, Mizuno M, Nakamura S, Iida M. Application of magnifying chromoscopy for the assessment of severity in patients with mild to moderate ulcerative colitis. Gastrointest Endosc. 1997; 46:400–405.
Article
21. ASGE Technology Committee, Wong Kee Song LM, Adler DG, et al. Chromoendoscopy. Gastrointest Endosc. 2007; 66:639–649.
Article
22. Kuznetsov K, Lambert R, Rey JF. Narrow-band imaging: potential and limitations. Endoscopy. 2006; 38:76–81.
Article
23. Neumann H, Neurath MF, Mudter J. New endoscopic approaches in IBD. World J Gastroenterol. 2011; 17:63–68.
Article
24. Matsumoto T, Kudo T, Jo Y, Esaki M, Yao T, Iida M. Magnifying colonoscopy with narrow band imaging system for the diagnosis of dysplasia in ulcerative colitis: a pilot study. Gastrointest Endosc. 2007; 66:957–965.
25. van den Broek FJ, Fockens P, van Eeden S, et al. Narrow-band imaging versus high-definition endoscopy for the diagnosis of neoplasia in ulcerative colitis. Endoscopy. 2011; 43:108–115.
Article
26. Ignjatovic A, East JE, Subramanian V, et al. Narrow band imaging for detection of dysplasia in colitis: a randomized controlled trial. Am J Gastroenterol. 2012; 107:885–890.
Article
27. Leifeld L, Rogler G, Stallmach A, et al. White-light or narrow-band imaging colonoscopy in surveillance of ulcerative colitis: a prospective multicenter study. Clin Gastroenterol Hepatol. 2015; 13:1776–1781.e1.
28. Hurlstone DP, Sanders DS, McAlindon ME, Thomson M, Cross SS. High-magnification chromoscopic colonoscopy in ulcerative colitis: a valid tool for in vivo optical biopsy and assessment of disease extent. Endoscopy. 2006; 38:1213–1217.
Article
29. Efthymiou M, Allen PB, Taylor AC, et al. Chromoendoscopy versus narrow band imaging for colonic surveillance in inflammatory bowel disease. Inflamm Bowel Dis. 2013; 19:2132–2138.
Article
30. Sussman DA, Barkin JA, Martin AM, et al. Development of advanced imaging criteria for the endoscopic identification of inflammatory polyps. Clin Transl Gastroenterol. 2015; 6:e128.
Article
31. Pellisé M, López-Cerón M, Rodríguez de Miguel C, et al. Narrow-band imaging as an alternative to chromoendoscopy for the detection of dysplasia in long-standing inflammatory bowel disease: a prospective, randomized, crossover study. Gastrointest Endosc. 2011; 74:840–848.
Article
32. Hiyama S, Iijima H, Shinzaki S, et al. Narrow band imaging with magnifying endoscopy for Peyer’s patches in patients with inflammatory bowel disease. Digestion. 2013; 87:269–280.
Article
33. Neumann H, Vieth M, Günther C, et al. Virtual chromoendoscopy for prediction of severity and disease extent in patients with inflammatory bowel disease: a randomized controlled study. Inflamm Bowel Dis. 2013; 19:1935–1942.
34. Kudo T, Matsumoto T, Esaki M, Yao T, Iida M. Mucosal vascular pattern in ulcerative colitis: observations using narrow band imaging colonoscopy with special reference to histologic inflammation. Int J Colorectal Dis. 2009; 24:495–501.
Article
35. Iacucci M, Daperno M, Lazarev M, et al. Development and reliability of the new endoscopic virtual chromoendoscopy score: the PICaSSO (Paddington international virtual chromoendoscopy score) in ulcerative colitis. Gastrointest Endosc. 2017; Mar. 18. [Epub]. https://doi.org/10.1016/j.gie.2017.03.012.
Article
36. Neumann H, Fuchs FS, Vieth M, et al. Review article: in vivo imaging by endocytoscopy. Aliment Pharmacol Ther. 2011; 33:1183–1193.
Article
37. Neumann H, Vieth M, Neurath MF, Atreya R. Endocytoscopy allows accurate in vivo differentiation of mucosal inflammatory cells in IBD: a pilot study. Inflamm Bowel Dis. 2013; 19:356–362.
38. Kiesslich R, Burg J, Vieth M, et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology. 2004; 127:706–713.
Article
39. Neumann H, Kiesslich R, Wallace MB, Neurath MF. Confocal laser endomicroscopy: technical advances and clinical applications. Gastroenterology. 2010; 139:388–392. 392.e1-e2.
Article
40. Iacucci M, Panaccione R, Ghosh S. Advances in novel diagnostic endoscopic imaging techniques in inflammatory bowel disease. Inflamm Bowel Dis. 2013; 19:873–880.
Article
41. Neumann H, Vieth M, Atreya R, et al. Assessment of Crohn’s disease activity by confocal laser endomicroscopy. Inflamm Bowel Dis. 2012; 18:2261–2269.
Article
42. Macé V, Ahluwalia A, Coron E, et al. Confocal laser endomicroscopy: a new gold standard for the assessment of mucosal healing in ulcerative colitis. J Gastroenterol Hepatol. 2015; 30 Suppl 1:85–92.
Article
43. Buda A, Hatem G, Neumann H, et al. Confocal laser endomicroscopy for prediction of disease relapse in ulcerative colitis: a pilot study. J Crohns Colitis. 2014; 8:304–311.
Article
44. Karstensen JG, Săftoiu A, Brynskov J, et al. Confocal laser endomicroscopy: a novel method for prediction of relapse in Crohn’s disease. Endoscopy. 2016; 48:364–372.
Article
45. Kiesslich R, Duckworth CA, Moussata D, et al. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut. 2012; 61:1146–1153.
Article
46. Liu JJ, Wong K, Thiesen AL, et al. Increased epithelial gaps in the small intestines of patients with inflammatory bowel disease: density matters. Gastrointest Endosc. 2011; 73:1174–1180.
Article
47. Turcotte JF, Wong K, Mah SJ, et al. Increased epithelial gaps in the small intestine are predictive of hospitalization and surgery in patients with inflammatory bowel disease. Clin Transl Gastroenterol. 2012; 3:e19.
Article
48. Shavrov A, Kharitonova AY, Davis EM, et al. A pilot study of confocal laser endomicroscopy to predict barrier dysfunction and relapse in pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2016; 62:873–878.
Article
49. Atreya R, Neumann H, Neufert C, et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat Med. 2014; 20:313–318.
Article
50. Günther U, Kusch D, Heller F, et al. Surveillance colonoscopy in patients with inflammatory bowel disease: comparison of random biopsy vs. targeted biopsy protocols. Int J Colorectal Dis. 2011; 26:667–672.
Article
51. Freire P, Figueiredo P, Cardoso R, et al. Surveillance in ulcerative colitis: is chromoendoscopy-guided endomicroscopy always better than conventional colonoscopy? A randomized trial. Inflamm Bowel Dis. 2014; 20:2038–2045.
52. Wanders LK, Kuiper T, Kiesslich R, et al. Limited applicability of chromoendoscopy-guided confocal laser endomicroscopy as daily-practice surveillance strategy in Crohn’s disease. Gastrointest Endosc. 2016; 83:966–971.
53. van den Broek FJ, van Es JA, van Eeden S, et al. Pilot study of probebased confocal laser endomicroscopy during colonoscopic surveillance of patients with longstanding ulcerative colitis. Endoscopy. 2011; 43:116–122.
Article
Full Text Links
  • CE
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr