Korean J Neurotrauma.  2017 Oct;13(2):113-118. 10.13004/kjnt.2017.13.2.113.

Factors Affecting Optimal Time of Cranioplasty: Brain Sunken Ratio

Affiliations
  • 1Department of Neurosurgery, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea. nschoi@yonsei.ac.kr

Abstract


OBJECTIVE
After a rigorous management of increased intracranial pressure by decompressive craniectomy (DC), cranioplasty (CP) is usually carried out for functional and cosmetic purposes. However, the optimal timing of CP remains controversial. Our study aims to analyze the relationship between the optimal timing of CP and the post-operative complications.
METHODS
From January 2013 to December 2015, ninety patients who underwent CP in a single institution were analyzed. We set the independent variables as follows: 1) patient characteristics; 2) the time interval between the DC and CP; 3) operation time; 4) anesthesia time; and 5) pre-operative computed tomography (CT) findings such as a degree of sunken brain by ratio of A (the median length from scalp to midline) to B (the length from midline to inner table of skull at this level). The dependent variables of this study are the event of post-operative complications.
RESULTS
The overall complication rate was 33.3%. There was no statistical significance in the time interval between the DC and CP in the groups with and without complications of CP (p=0.632). However, there was a significant statistical difference in the degree of sunken brain by ratio (A/B) between the two groups (p<0.001).
CONCLUSION
From this study, we conclude that it is better to determine the optimal timing of CP by the pre-operative CT finding than by the time interval between the DC and CP. Hereby, we suggest a potentially useful determinant of optimal timing of CP.

Keyword

Complication; Cranioplasty; Decompressive craniectomy

MeSH Terms

Anesthesia
Brain*
Decompressive Craniectomy
Humans
Intracranial Pressure
Scalp
Skull

Figure

  • FIGURE 1 Computed tomography (CT) of brain before the cranioplasty. The brain sunken ratio is calculated as the ratio of A (the median length from scalp to midline) to B (the length from midline to inner table of skull at this level) at the CT section of maximum size craniectomy.


Reference

1. Abbott KH. Use of frozen cranial bone flaps for autogenous and homologous grafts in cranioplasty and spinal interbody fusion. J Neurosurg. 1953; 10:380–388. PMID: 13070062.
2. Andrzejak S, Fortuniak J, Wróbel-Wiśniewska G, Zawirski M. Clinical evaluation of the polypropylene-polyester knit used as a cranioplasty material. Acta Neurochir (Wien). 2005; 147:973–976. PMID: 16028110.
Article
3. Beauchamp KM, Kashuk J, Moore EE, Bolles G, Rabb C, Seinfeld J, et al. Cranioplasty after postinjury decompressive craniectomy: is timing of the essence? J Trauma. 2010; 69:270–274. PMID: 20699735.
Article
4. Bender A, Heulin S, Rohrer S, Mehrkens JH, Heidecke V, Straube A, et al. Early cranioplasty may improve outcome in neurological patients with decompressive craniectomy. Brain Inj. 2013; 27:1073–1079. PMID: 23662672.
Article
5. Bullock MR, Chesnut R, Ghajar J, Gordon D, Hartl R, Newell DW, et al. Surgical management of acute subdural hematomas. Neurosurgery. 2006; 58:S16–S24. PMID: 16710968.
Article
6. Carvi YNMN, Höllerhage HG. Early combined cranioplasty and programmable shunt in patients with skull bone defects and CSF-circulation disorders. Neurol Res. 2006; 28:139–144. PMID: 16551430.
7. Chang V, Hartzfeld P, Langlois M, Mahmood A, Seyfried D. Outcomes of cranial repair after craniectomy. J Neurosurg. 2010; 112:1120–1124. PMID: 19612971.
Article
8. Chibbaro S, Di Rocco F, Mirone G, Fricia M, Makiese O, Di Emidio P, et al. Decompressive craniectomy and early cranioplasty for the management of severe head injury: a prospective multicenter study on 147 patients. World Neurosurg. 2011; 75:558–562. PMID: 21600512.
Article
9. Chun HJ, Yi HJ. Efficacy and safety of early cranioplasty, at least within 1 month. J Craniofac Surg. 2011; 22:203–207. PMID: 21233757.
Article
10. Coulter IC, Pesic-Smith JD, Cato-Addison WB, Khan SA, Thompson D, Jenkins AJ, et al. Routine but risky: a multi-centre analysis of the outcomes of cranioplasty in the Northeast of England. Acta Neurochir (Wien). 2014; 156:1361–1368. PMID: 24752723.
Article
11. Erdogan E, Duz B, Kocaoglu M, Izci Y, Sirin S, Timurkaynak E. The effect of cranioplasty on cerebral hemodynamics: evaluation with transcranial Doppler sonography. Neurol India. 2003; 51:479–481. PMID: 14742926.
12. Fodstad H, Love JA, Ekstedt J, Fridén H, Liliequist B. Effect of cranioplasty on cerebrospinal fluid hydrodynamics in patients with the syndrome of the trephined. Acta Neurochir (Wien). 1984; 70:21–30. PMID: 6741628.
Article
13. Gooch MR, Gin GE, Kenning TJ, German JW. Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases. Neurosurg Focus. 2009; 26:E9.
Article
14. Grant GA, Jolley M, Ellenbogen RG, Roberts TS, Gruss JR, Loeser JD. Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents. J Neurosurg. 2004; 100:163–168. PMID: 14758944.
Article
15. Güresir E, Beck J, Vatter H, Setzer M, Gerlach R, Seifert V, et al. Subarachnoid hemorrhage and intracerebral hematoma: incidence, prognostic factors, and outcome. Neurosurgery. 2008; 63:1088–1093. PMID: 19057320.
16. Güresir E, Raabe A, Setzer M, Vatter H, Gerlach R, Seifert V, et al. Decompressive hemicraniectomy in subarachnoid haemorrhage: the influence of infarction, haemorrhage and brain swelling. J Neurol Neurosurg Psychiatry. 2009; 80:799–801. PMID: 19531687.
17. Güresir E, Schuss P, Vatter H, Raabe A, Seifert V, Beck J. Decompressive craniectomy in subarachnoid hemorrhage. Neurosurg Focus. 2009; 26:E4.
Article
18. Güresir E, Vatter H, Schuss P, Oszvald A, Raabe A, Seifert V, et al. Rapid closure technique in decompressive craniectomy. J Neurosurg. 2011; 114:954–960. PMID: 20113157.
Article
19. Huang YH, Lee TC, Yang KY, Liao CC. Is timing of cranioplasty following posttraumatic craniectomy related to neurological outcome? Int J Surg. 2013; 11:886–890. PMID: 23933129.
Article
20. Liang W, Xiaofeng Y, Weiguo L, Gang S, Xuesheng Z, Fei C, et al. Cranioplasty of large cranial defect at an early stage after decompressive craniectomy performed for severe head trauma. J Craniofac Surg. 2007; 18:526–532. PMID: 17538313.
Article
21. Martin KD, Franz B, Kirsch M, Polanski W, von der, Schackert G, et al. Autologous bone flap cranioplasty following decompressive craniectomy is combined with a high complication rate in pediatric traumatic brain injury patients. Acta Neurochir (Wien). 2014; 156:813–824. PMID: 24532225.
Article
22. Rish BL, Dillon JD, Meirowsky AM, Caveness WF, Mohr JP, Kistler JP, et al. Cranioplasty: a review of 1030 cases of penetrating head injury. Neurosurgery. 1979; 4:381–385. PMID: 111153.
23. Schiffer J, Gur R, Nisim U, Pollak L. Symptomatic patients after craniectomy. Surg Neurol. 1997; 47:231–237. PMID: 9068692.
Article
24. Schwab S, Steiner T, Aschoff A, Schwarz S, Steiner HH, Jansen O, et al. Early hemicraniectomy in patients with complete middle cerebral artery infarction. Stroke. 1998; 29:1888–1893. PMID: 9731614.
Article
25. Sobani ZA, Shamim MS, Zafar SN, Qadeer M, Bilal N, Murtaza SG, et al. An institutional audit and analysis of factors related to complications. Surg Neurol Int. 2011; 2:123. PMID: 22059118.
26. Yadla S, Campbell PG, Chitale R, Maltenfort MG, Jabbour P, Sharan AD. Effect of early surgery, material, and method of flap preservation on cranioplasty infections: a systematic review. Neurosurgery. 2011; 68:1124–1129. discussion 1130. PMID: 21242830.
Article
27. Yang XJ, Hong GL, Su SB, Yang SY. Complications induced by decompressive craniectomies after traumatic brain injury. Chin J Traumatol. 2003; 6:99–103. PMID: 12659705.
Full Text Links
  • KJN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr