Nat Prod Sci.  2016 Dec;22(4):299-306. 10.20307/nps.2016.22.4.299.

HPLC analysis of Phenolic Substances and Anti-Alzheimer's Activity of Korean Quercus Species

Affiliations
  • 1Department of Agro-industrial Technology, Lambung Mangkurat University, Banjarbaru 70714, Indonesia.
  • 2Department of Forest Science, Sangji University, Wonju 26339, Korea.
  • 3Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea.
  • 4Southeast Medi-Chem Institute, Busan 48287, Korea.
  • 5Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Korea. hjpark@sangji.ac.kr

Abstract

This study aimed to establish the quantitative method to analyze the content of peroxynitrite-scavengers belonging to polyphenols in six Korean Quercus species (Quercus mongolica, Q. dentata, Q. acutissima, Q. alienta, Q. serrata, and Q. variabilis) by HPLC. The twelve peroxynitrite-scavengers, flavanols (catechins: (+)-catechin, (−)-epicatechin, and (−)-epigallocatechin), flavonols (kaempferol and quercetin), flavonol glycosides (astragalin, quercitrin, and isoquercitrin), flavonol acylated glycosides (astragalin 6"³-gallate and isoquercitrin 6"³-gallate), gallic acid and its dimer (ellagic acid) were analyzed by HPLC. Further, anti-Alzheimer's activity was assayed in a passive avoidance testusing mice by measuring the retention latency (sec), the concentration of acetylcholine (ACh), and acetylcholinesterase (AChE) activity. Simultaneous analysis of the extracts of the six Quercus leaves was achieved on a Capcell C18 column (5 µm, 250 mm × 4.6 mm i.d.) with a gradient elution of 0.05% HAc and 0.05% HAc in CH₃CN. In the extract of Q. mongolica leaves, the content of gallic acid (32.53 mg/g), (+)-catechin (28.78 mg/g), (−)-epicatehin (22.03 mg/g), astragalin 6"³-gallate (20.94 mg/g), and isoquercitrin 6"³-gallate (44.11 mg/g) and peroxynitrite-scavenging activity (ICâ‚…â‚€, 0.831 µg/ml) were high. This extract delayed the retention latency and inhibited acetylcholinesterase activity in scopolamine-induced memory impairment of mice, suggesting that it has anti-Alzheimer's activity.

Keyword

Quercus species; Quercus mongolica; Fagaceae; Quantitative; HPLC; Passive avoidance test

MeSH Terms

Acetylcholine
Acetylcholinesterase
Animals
Catechin
Chromatography, High Pressure Liquid*
Fagaceae
Flavonols
Gallic Acid
Glycosides
Memory
Methods
Mice
Phenol*
Polyphenols
Quercus*
Acetylcholine
Acetylcholinesterase
Catechin
Flavonols
Gallic Acid
Glycosides
Phenol
Polyphenols

Figure

  • Fig. 1. Structure of the twelve phenolic compounds used for the analysis of Quercus species.

  • Fig. 2. HPLC chromatograms of mixed standards and the extracts of six Quercus species.

  • Fig. 3. Effect of the extract of Q. mongolica leaves on the retention latency in passive avoidance test. QM 50 and QM 100 represent the group of mice treated with 50 and 100 mg/kg dose, respectively. The retention test was performed 24 h after the training trial. Normal group (N) of mice without any treatment (n = 5); Control group (C) was intraperitoneally injected with 1 mg/kg of scopolamine (n = 5); The positive control group (P) was injected with donepezil (x mg/kg); The two treatment groups, QM 50 and QM 100, were orally administered for 4 weeks before the training trial. Bars represent means ± SEM of retention latency. ∗ p < 0.05 vs. the C.

  • Fig. 4. Acetylcholinesterase inhibitory activity of the extract of Q. mongolica leaves at the 50 (QM 50) and 100 mg/kg (QM 100) dose. Acetylcholinesterase inhibitory activity of the extract of Q. mongolica leaves at the 50 (QM 50) and 100 mg/kg (QM 100) dose. ∗p < 0.001 vs. C.

  • Fig. 5. Effect of the extract of Q. mongolica leaves on the concentration of acetylcholine in scopolamine-treated mice. Effect of the extract of Q. mongolica leaves on the concentration of acetylcholine in scopolamine-treated mice. †p < 0.001 vs. C.

  • Fig. 6. Effect of the extract of Q. mongolica leaves on body and brain weight in scopolamine-treated mice.


Reference

References

(1). Kim J. G.., Bae Y. S.Chemical constituents of domestic Quercus spp. Leaves. Mokchae Konghak. 2006. 34:61–71.
(2). Kuliev Z. A.., Vdovin A. D.., Abdullaev N. D.., Makhamatkulov A. D.., Matikov V. M.Chem. Nat. Prod. 1997. 33:642–652.
(3). Sakar M. K.., Söhretogu D.., Özalp M.., Ekizoglu M.., Piancente S.., Pizza C.Turk. J. Chem. 2005. 29:555–559.
(4). Zaveri N. T.Life Sci. 2006. 78:2073–2080.
(5). Patcher P.., Obrosova I. G.., Mabley J. G.., Szabó C.Curr. Med. Chem. 2005. 12:267–275.
(6). Zhang Y. J.., Xu Y. F.., Liu Y. H.., Yin J.., Li H. L.., Wang Q.., Wang J. Z.FASEB J. 2006. 20:131–142.
(7). Ortiz G. G.., Benítez-King G. A.., Rosales-Corral S. A.., Pacheco-Moisés F. P.., Velázquez-Brizuela I. E.Curr. Neuropharmacol. 2008. 6:203–214.
(8). Syad A. N.., Devi K. P.Bot. Targ. Ther. 2014. 4:11–26.
(9). Moniruzzaman M.., Asaduzzaman M.., Hossain M. S.., Sarker J.., Rahman S. M. A.., Rashid M.., Rahman M. M.BMC Complement. Altern. Med. 2015. 15:403–412.
(10). Nugroho A.., Rhim T. J.., Choi M. Y.., Choi J. S.., Kim Y. C.., Kim M. S.., Park H. J.Arch. Pharm. Res. 2014. 37:890–898.
(11). Kooy N. W.., Royall J. A.., Ischiropoulos H.., Beckman J. S.Free Radic. Biol. Med. 1994. 16:149–156.
(12). Van der Zee E. A.., Biemans B. A.., Gerkema M. P.., Daans S. J.Neurosci. Res. 2004. 78:508–519.
(13). Ellman G. L.., Courtney K. D.., Andres V. Jr.., Feather-stone R. M.Biochem. Pharmacol. 1961. 7:88–95.
(14). Hestrin S. J.Biol. Chem. 1949. 180:249–261.
(15). Chung H. Y.., Yokozawa T.., Soung D. Y.., Kye I. S.., No J. K.., Baek B. S. J.Agric. Food Chem. 1998. 46:4484–4486.
(16). Gimenez-Garzó C.., Urios A.., Agustí A.., González-López O.., Escudero-García D.., Escudero-Sanchis A.., Serra M. A.., Giner-Durán R.., Montoliu C.., Felipo V.Antioxid. Redox Signal. 2015. 22:871–877.
(17). Smith M. A.., Taneda S.., Richey P. L.., Miyata S.., Yan S. D.., Stern D.., Sayre L. M.., Monnier V. M.., Perry G. Proc. Natl. Acad. Sci. U. S.A. 1994. 91:5710–5714.
(18). Sayre L. M.., Zelasko D. A.., Harris P. L.., Perry G.., Salomon R. G.., Smith M. A. J.Neurochem. 1997. 68:2092–2097.
(19). Perry G.., Cash A. D.., Smith M. A. J.Biomed. Biotechnol. 2002. 2:120–123.
(20). Durairajan S. S.., Yuan Q.., Xie L.., Chan W. S.., Kum W. F.., Koo I.., Liu C.., Song Y.., Huang J. D.., Klein W. L.., Li M.Neurochem Int. 2008. 52:741–750.
(21). Feng Y.., Yang S. G.., Du X. T.., Zhang X.., Sun X. X.., Zhao M.., Sun G. Y.., Liu R. T.Biochem. Biophys. Res. Commun. 2009. 390:1250–1254.
(22). Zhang L.., Fiala M, Cashman J.., Sayre J.., Espinosa A.., Mahanian M.., Zaghi J.., Badmaev V.., Graves M. C.., Bernard G.., Rosenthal M. J.Alzheimers Dis. 2006. 10:1–7.
(23). Hwang E. M.., Ryu Y. B.., Kim H. Y.., Kim D. G.., Hong S. G.., Lee J. H.., Curtis-Long M. J.., Jeong S. H.., Park J. Y.., Park K. H.Bioorg. Med. Chem. 2008. 16:6669–6674.
(24). Descamps O.., Spilman P.., Zhang Q.., Libeu C. P.., Poksay K.., Gorostiza O.., Campagna J.., Jagodzinska B.., Bredesen D. E.., John V. J.Alzheimers Dis. 2013. 37:343–355.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr