1. Simopoulos AP. Genetic variation and dietary response: Nutrigenetics/Nutrigenomics. Asia Pacific J Clin Nutr. 2002; 11:S117–28.
Article
2. van Ommen B, Stierum R. Nutrigenomics: exploiting systems biology in the nutrition and health arena. Curr Opin Biotechnol. 2002; 13:517–21.
Article
3. Elliott R, Ong TJ. Nutritional genomics. BMJ. 2002; 324:1438–42.
4. Chávez A, Muñoz de Chávez M. Nutrigenomics in public health nutrition: short-term perspectives. Eur J Clin Nutr. 2003; 57(Suppl 1):S97–100.
Article
5. Kritchevsky D. Diet and cancer: what's next? J Nutr. 2003; 133(11 Suppl 1):3827S–9S.
Article
6. Ordovas JM, Corella D. Nutritional genomics. Annu Rev Genomics Hum Genet. 2004; 5:71–118.
Article
7. Müller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Genet. 2003; 4:315–22.
Article
8. DeBusk R. Diet-related disease, nutritional genomics, and food and nutrition professionals. J Am Diet Assoc. 2009; 109:410–3.
Article
9. Diamond J. The double puzzle of diabetes. Nature. 2003; 423:599–602.
Article
10. Gouda HN, Sagoo GS, Harding AH, Yates J, Sandhu MS, Higgins JP. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and metaanalysis. Am J Epidemiol. 2010; 171:645–55.
11. Lazar MA. PPAR gamma, 10 years later. Biochimie. 2005; 87:9–13.
12. Lamri A, Abi Khalil C, Jaziri R, Velho G, Lantieri O, Vol S, Froguel P, Balkau B, Marre M, Fumeron F. Dietary fat intake and polymorphisms at the PPARG locus modulate BMI and type 2 diabetes risk in the D.E.S.I.R. prospective study. Int J Obes (Lond). 2012; 36:218–24.
Article
13. Luan J, Browne PO, Harding AH, Halsall DJ, O'Rahilly S, Chatterjee VK, Wareham NJ. Evidence for gene-nutrient interaction at the PPARgamma locus. Diabetes. 2001; 50:686–9.
14. Ruchat SM, Elks CE, Loos RJ, Vohl MC, Weisnagel SJ, Rankinen T, Bouchard C, Pérusse L. Evidence of interaction between type 2 diabetes susceptibility genes and dietary fat intake for adiposity and glucose homeostasis-related phenotypes. J Nutrigenet Nutrigenomics. 2009; 2:225–34.
Article
15. Cornelis MC, Qi L, Kraft P, Hu FB. TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. Am J Clin Nutr. 2009; 89:1256–62.
Article
16. Ortega-Azorín C, Sorlí JV, Asensio EM, Coltell O, Martínez-González MÁ, Salas-Salvadó J, Covas MI, Arós F, Lapetra J, Serra-Majem L, Gómez-Gracia E, Fiol M, Sáez-Tormo G, Pintó X, Muñoz MA, Ros E, Ordovás JM, Estruch R, Corella D. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol. 2012; 11:137.
Article
17. Steemburgo T, Azevedo MJ, Gross JL, Milagro FI, Campión J, Martínez JA. The rs9939609 polymorphism in the FTO gene is associated with fat and fiber intakes in patients with type 2 diabetes. J Nutrigenet Nutrigenomics. 2013; 6:97–106.
18. Kang R, Kim M, Chae JS, Lee SH, Lee JH. Consumption of whole grains and legumes modulates the genetic effect of the APOA5–1131C variant on changes in triglyceride and apolipoprotein A-V concentrations in patients with impaired fasting glucose or newly diagnosed type 2 diabetes. Trials. 2014; 15:100.
Article
19. Kim M, Chae JS, Kim M, Lee SH, Lee JH. Effects of a 3-year dietary intervention on age-related changes in triglyceride and apolipoprotein A-V levels in patients with impaired fasting glucose or new-onset type 2 diabetes as a function of the APOA5–1131 T > C polymorphism. Nutr J. 2014; 13:40.
Article