Int J Stem Cells.  2016 Nov;9(2):169-175. 10.15283/ijsc16020.

Unlocking the Neurogenic Potential of Mammalian Müller Glia

Affiliations
  • 1Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA. iahmad@unmc.edu

Abstract

Müller glia (MG) are the primary support cells in the vertebrate retina, regulating homeostasis in one of the most metabolically active tissues. In lower vertebrates such as fish, they respond to injury by proliferating and reprogramming to regenerate retinal neurons. In mammals, MG may also react to injury by proliferating, but they fail to initiate regeneration. The barriers to regeneration could be intrinsic to mammalian MG or the function of the niche that cannot support the MG reprogramming required for lineage conversion or both. Understanding these mechanisms in light of those being discovered in fish may lead to the formulation of strategies to unlock the neurogenic potential of MG and restore regeneration in the mammalian retina.

Keyword

Müller glia; Regeneration; Neurogenesis; miR-124; Lin28; Retina

MeSH Terms

Homeostasis
Mammals
Neurogenesis
Neuroglia*
Regeneration
Retina
Retinal Neurons
Vertebrates

Figure

  • Fig. 1 A schematic representation of mechanisms underlying the neurogenic potential of MG. A subset of MG, most likely those with dormant stem cell properties, respond to injury by proliferating presumably under Notch signaling influence. As the activated MG migrate out of the INL, the changing niche, presumably reflected in altered Notch/cytokine signaling, influence them to engage both the excitatory (Green) and inhibitory (Red) axes regulating the neurogenic potential. It is possible that the imbalance between the two axes and their inadequate niche-based recruitment prevents mammalian MG from regenerating retinal neurons. The niche could be composed of retinal neurons, immigrant astrocytes, microglia, and endothelial cells. The niche-based communication for regeneration may involve diverse signaling pathways, exemplified by Notch and cytokine signaling, acting in concert. Notch signaling besides influencing these two molecular axes, may directly influence the expression of proneural genes. ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform layer, GCL: ganglion cell layer.

  • Fig. 2 The intrinsic molecular axes and their involvement in the neurogenic potential of MG. (A) A schematic diagram shows the virus-mediated ectopic expression in enriched MG to perturb Lin28a (Lin28a-let7-Hmga2/Ascl1) and miR-124 and miR-9/9* (Rest-miR-124/miR-9-9*-Sox9/Hes). (B) Lin28a overexpression caused a significant decrease and increase in transcripts characterizing MG (Glast) and neurons (beta-tubulin and Map2), respectively. Neuronal differentiation of transduced MG could also be ascertained by their neuronal morphology and expression of immunoreactivities corresponding to beta-tubulin and Map2. Neuronal differentiation of MG was accompanied by a significant increase and decrease in the expression of positive (miR-124, Hmga2, and Ascl1) and negative (REST and Hes1) regulators of neurogenesis. (C) Similarly, miR-124-9-9* overexpression led to a decrease in levels of glia-specific (Glast) and an increase in neuron-specific (beta-tubulin and Map2) transcripts. As observed in Lin28a overexpression, transduced MG displayed neuronal morphology and expressed beta-tubulin and Map2 immunoreactivities. A significant increase and decrease in the expression of positive (Lin28a and Ascl1) and negative (REST and Hes1) regulators of neurogenesis was accompanied by miR-124-9-9* mediated neuronal differentiation of MG. Levels of Hmga2 transcripts remained unchanged. That the two axes might intersect and influence each other was demonstrated by the increase of miR-124 transcript levels in Lin28 overexpression experiment and vice versa (enclosed graph, B, C). MG were enriched as described in Das et al., (6). They were transduced with Lin28a retrovirus (24) or miR124-9-9* lentivirus (27) and the effects of perturbations on gene expression and phenotype were examined by Q-PCR and immunocytochemical analyses, respectively, as described in Parameswaran et al., (22) and Xia et al., (17). Controls included MG transduced with empty retrovirus/lentivirus. Levels of transcripts and miRNA are presented after normalization with that of GAPDH and U6, respectively. Arrowheads indicate transduced MG (GFP+/RFP+) expressing neuronal markers, beta-tubulin or Map2. Scale bar, 50 μm. Data are mean±s.e.m.


Reference

References

1. Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013; 80:588–601. DOI: 10.1016/j.neuron.2013.10.037. PMID: 24183012.
Article
2. Dimou L, Götz M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev. 2014; 94:709–737. DOI: 10.1152/physrev.00036.2013. PMID: 24987003.
Article
3. Karl MO, Reh TA. Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med. 2010; 16:193–202. DOI: 10.1016/j.molmed.2010.02.003. PMID: 20303826. PMCID: 2854262.
Article
4. Ahmad I, Del Debbio CB, Das AV, Parameswaran S. Müller glia: a promising target for therapeutic regeneration. Invest Ophthalmol Vis Sci. 2011; 52:5758–5764. DOI: 10.1167/iovs.11-7308. PMID: 21803967.
Article
5. Del Debbio CB, Balasubramanian S, Parameswaran S, Chaudhuri A, Qiu F, Ahmad I. Notch and Wnt signaling mediated rod photoreceptor regeneration by Müller cells in adult mammalian retina. PLoS One. 2010; 5:e12425. DOI: 10.1371/journal.pone.0012425.
Article
6. Das AV, Mallya KB, Zhao X, Ahmad F, Bhattacharya S, Thoreson WB, Hegde GV, Ahmad I. Neural stem cell properties of Müller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol. 2006; 299:283–302. DOI: 10.1016/j.ydbio.2006.07.029. PMID: 16949068.
Article
7. Lenkowski JR, Raymond PA. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res. 2014; 40:94–123. DOI: 10.1016/j.preteyeres.2013.12.007. PMID: 24412518. PMCID: 3999222.
Article
8. Goldman D. Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014; 15:431–442. DOI: 10.1038/nrn3723. PMID: 24894585. PMCID: 4249724.
Article
9. Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, Roska B, Sun BB, Cepko CL. The transcriptome of retinal Müller glial cells. J Comp Neurol. 2008; 509:225–238. DOI: 10.1002/cne.21730. PMID: 18465787. PMCID: 2665263.
Article
10. Sakurai K, Osumi N. The neurogenesis-controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. J Neurosci. 2008; 28:4604–4612. DOI: 10.1523/JNEUROSCI.5074-07.2008. PMID: 18448636.
Article
11. Heinrich C, Bergami M, Gascón S, Lepier A, Viganò F, Dimou L, Sutor B, Berninger B, Götz M. Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Reports. 2014; 3:1000–1014. DOI: 10.1016/j.stemcr.2014.10.007. PMID: 25458895. PMCID: 4264057.
Article
12. Amamoto R, Arlotta P. Development-inspired reprogramming of the mammalian central nervous system. Science. 2014; 343:1239882. DOI: 10.1126/science.1239882. PMID: 24482482. PMCID: 4122114.
Article
13. Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, Fujiwara T, Ishidate F, Kageyama R. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science. 2013; 342:1203–1208. DOI: 10.1126/science.1242366. PMID: 24179156.
Article
14. de Melo J, Zibetti C, Clark BS, Hwang W, Miranda-Angulo AL, Qian J, Blackshaw S. Lhx2 is an essential factor for retinal gliogenesis and notch signaling. J Neurosci. 2016; 36:2391–2405. DOI: 10.1523/JNEUROSCI.3145-15.2016. PMID: 26911688. PMCID: 4764661.
Article
15. Balzer E, Heine C, Jiang Q, Lee VM, Moss EG. LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development. 2010; 137:891–900. DOI: 10.1242/dev.042895. PMID: 20179095.
Article
16. Hirabayashi Y, Suzki N, Tsuboi M, Endo TA, Toyoda T, Shinga J, Koseki H, Vidal M, Gotoh Y. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron. 2009; 63:600–613. DOI: 10.1016/j.neuron.2009.08.021. PMID: 19755104.
Article
17. Xia X, Ahmad I. let-7 microRNA regulates neurogliogenesis in the mammalian retina through Hmga2. Dev Biol. 2016; 410:70–85. DOI: 10.1016/j.ydbio.2015.12.010.
Article
18. Zhang J, Taylor RJ, La Torre A, Wilken MS, Cox KE, Reh TA, Vetter ML. Ezh2 maintains retinal progenitor proliferation, transcriptional integrity, and the timing of late differentiation. Dev Biol. 2015; 403:128–138. DOI: 10.1016/j.ydbio.2015.05.010. PMID: 25989023. PMCID: 4469612.
Article
19. Gorsuch RA, Hyde DR. Regulation of Müller glial dependent neuronal regeneration in the damaged adult zebrafish retina. Exp Eye Res. 2014; 123:131–140. DOI: 10.1016/j.exer.2013.07.012.
Article
20. Rehfeld F, Rohde AM, Nguyen DT, Wulczyn FG. Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis. Cell Tissue Res. 2015; 359:145–160. DOI: 10.1007/s00441-014-1872-2.
Article
21. Nishino J, Kim I, Chada K, Morrison SJ. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell. 2008; 135:227–239. DOI: 10.1016/j.cell.2008.09.017. PMID: 18957199. PMCID: 2582221.
Article
22. Parameswaran S, Xia X, Hegde G, Ahmad I. Hmga2 regulates self-renewal of retinal progenitors. Development. 2014; 141:4087–4097. DOI: 10.1242/dev.107326. PMID: 25336737. PMCID: 4302892.
Article
23. Cimadamore F, Amador-Arjona A, Chen C, Huang CT, Terskikh AV. SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc Natl Acad Sci U S A. 2013; 110:E3017–E3026. DOI: 10.1073/pnas.1220176110. PMID: 23884650. PMCID: 3740872.
Article
24. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, O’Sullivan M, Lu J, Phillips LA, Lockhart VL, Shah SP, Tanwar PS, Mermel CH, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes TP, Llovet JM, Radich J, Mullighan CG, Golub TR, Sorensen PH, Daley GQ. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet. 2009; 41:843–848. DOI: 10.1038/ng.392. PMID: 19483683. PMCID: 2757943.
Article
25. Stappert L, Roese-Koerner B, Brüstle O. The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell Tissue Res. 2015; 359:47–64. DOI: 10.1007/s00441-014-1981-y. PMCID: 4284387.
Article
26. Qureshi IA, Gokhan S, Mehler MF. REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions. Cell Cycle. 2010; 9:4477–4486. DOI: 10.4161/cc.9.22.13973. PMID: 21088488. PMCID: 3048046.
Article
27. Yoo AS, Staahl BT, Chen L, Crabtree GR. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature. 2009; 460:642–646. PMID: 19561591. PMCID: 2921580.
Article
28. Wohl SG, Reh TA. miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Müller glia. Glia. 2016; 64:743–762. DOI: 10.1002/glia.22958. PMID: 26732729.
Article
29. Fischer AJ, Zelinka C, Gallina D, Scott MA, Todd L. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 2014; 62:1608–1628. DOI: 10.1002/glia.22703. PMID: 24916856. PMCID: 4140984.
Article
30. Del Debbio CB, Mir Q, Parameswaran S, Mathews S, Xia X, Zheng L, Neville AJ, Ahmad I. Notch signaling activates stem cell properties of müller glia through transcriptional regulation and Skp2-mediated degradation of p27Kip1. PLoS One. 2016; 11:e0152025. DOI: 10.1371/journal.pone.0152025.
Article
31. Wan J, Zheng H, Xiao HL, She ZJ, Zhou GM. Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina. Biochem Biophys Res Commun. 2007; 363:347–354. DOI: 10.1016/j.bbrc.2007.08.178. PMID: 17880919.
Article
32. Zhao XF, Wan J, Powell C, Ramachandran R, Myers MG Jr, Goldman D. Leptin and IL-6 family cytokines synergize to stimulate Müller glia reprogramming and retina regeneration. Cell Rep. 2014; 9:272–284. DOI: 10.1016/j.celrep.2014.08.047. PMID: 25263554. PMCID: 4194149.
Article
33. Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R. Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res. 2005; 306:343–348. DOI: 10.1016/j.yexcr.2005.03.015. PMID: 15925590.
Article
34. Mayle A, Luo M, Jeong M, Goodell MA. Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A. 2013; 83:27–37. DOI: 10.1002/cyto.a.22093.
Article
35. Gracz AD, Magness ST. Defining hierarchies of stemness in the intestine: evidence from biomarkers and regulatory pathways. Am J Physiol Gastrointest Liver Physiol. 2014; 307:G260–G273. DOI: 10.1152/ajpgi.00066.2014. PMID: 24924746. PMCID: 4121637.
Article
36. Kretzschmar K, Watt FM. Markers of epidermal stem cell subpopulations in adult mammalian skin. Cold Spring Harb Perspect Med. 2014; 4:DOI: 10.1101/cshperspect.a013631. PMID: 24993676. PMCID: 4200210.
Article
37. Lim DA, Alvarez-Buylla A. Adult neural stem cells stake their ground. Trends Neurosci. 2014; 37:563–571. DOI: 10.1016/j.tins.2014.08.006. PMID: 25223700. PMCID: 4203324.
Article
38. Suga A, Sadamoto K, Fujii M, Mandai M, Takahashi M. Proliferation potential of Müller glia after retinal damage varies between mouse strains. PLoS One. 2014; 9:e94556. DOI: 10.1371/journal.pone.0094556.
Article
39. Tsubura A, Yoshizawa K, Kuwata M, Uehara N. Animal models for retinitis pigmentosa induced by MNU; disease progression, mechanisms and therapeutic trials. Histol Histopathol. 2010; 25:933–944. PMID: 20503181.
40. Li Y, Schlamp CL, Nickells RW. Experimental induction of retinal ganglion cell death in adult mice. Invest Ophthalmol Vis Sci. 1999; 40:1004–1008. PMID: 10102300.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr