Nutr Res Pract.  2015 Jun;9(3):249-255. 10.4162/nrp.2015.9.3.249.

The supplementation effects of peanut sprout on reduction of abdominal fat and health indices in overweight and obese women

Affiliations
  • 1Department of Food Science and Nutrition, Dankook University, Gyunggi-Do, 448-701, Korea.
  • 2Department of Nursing, Eulji University, Gyeonggi-Do 461-632, Korea.
  • 3Department of Food and Nutrition, Eulji University, 553 Sanseong-Daero,Seongnam-Si, Gyeonggi-Do 461-632, Korea. nekang@eulji.ac.kr

Abstract

BACKGROUD/OBJECTIVES: This study was conducted in order to investigate the effect of peanut sprout extracts (PSE) on health indices in overweight and obese women (BMI > or = 23 kg/m2).
SUBJECTS/METHODS
Subjects were divided into three groups by double-blind randomized trial; the Placebo group (n = 15) and the Low PSE group (2.6 g PSE/day, n = 15), and the High PSE group (5.8 g PSE/day, n = 15). Subjects consumed 12 capsules per day, three times a day, 30 min before meals, for 4 weeks. Anthropometric data, blood biochemical variables, and dietary intake were evaluated before and after the experiments.
RESULTS
In the Low and High PSE group, the waist circumference showed a significant decrease between pre- and post-test. In the Low PSE group, the reduction of systolic blood pressure between pre- and post-test was statistically significant. Serum LDL or triglyceride levels in both Low and High PSE groups were significantly decreased, and serum alanine transaminase and aspartate transaminase were significantly decreased only in the Low PSE group. The parameters regarding erythrocyte and leucocyte counts showed no significant differences between pre- and post-test among groups, which suggested the safety of intake of peanut sprouts as a dietary supplement.
CONCLUSIONS
This study indicates that PSE supplementation improves abdominal obesity and overall health indices. Therefore, an appropriate amount of peanut sprouts may be a plausible effective agent for obesity and obesity related health problems in obese women.

Keyword

Peanut sprout; obesity; triglyceride; women; supplement

MeSH Terms

Abdominal Fat*
Alanine Transaminase
Aspartate Aminotransferases
Blood Pressure
Capsules
Dietary Supplements
Erythrocytes
Female
Humans
Meals
Obesity
Obesity, Abdominal
Overweight*
Triglycerides
Waist Circumference
Alanine Transaminase
Aspartate Aminotransferases
Capsules

Cited by  1 articles

High maysin corn silk extract reduces body weight and fat deposition in C57BL/6J mice fed high-fat diets
Eun Young Lee, Sun Lim Kim, Hyeon Jung Kang, Myung Hwan Kim, Ae Wha Ha, Woo Kyoung Kim
Nutr Res Pract. 2016;10(6):575-582.    doi: 10.4162/nrp.2016.10.6.575.


Reference

1. Ministry of Health and Welfare. Korea Centers for Disease Control and Prevention. Korea Health Statistics 2009: Korea National Health and Nutrition Examination Survey (KNHANES IV-3). Cheongwon: Korea Centers for Disease Control and Prevention;2010.
2. Calori G, Lattuada G, Piemonti L, Garancini MP, Ragogna F, Villa M, Mannino S, Crosignani P, Bosi E, Luzi L, Ruotolo G, Perseghin G. Prevalence, metabolic features, and prognosis of metabolically healthy obese Italian individuals: the Cremona Study. Diabetes Care. 2011; 34:210–215.
Article
3. Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. JAMA. 2014; 311:74–86.
4. Wang KH, Lai YH, Chang JC, Ko TF, Shyu SL, Chiou RY. Germination of peanut kernels to enhance resveratrol biosynthesis and prepare sprouts as a functional vegetable. J Agric Food Chem. 2005; 53:242–246.
Article
5. Kang HI, Kim JY, Park KW, Kang JS, Choi MR, Moon KD, Seo KI. Resveratrol content and nutritional components in peanut sprouts. Korean J Food Preserv. 2010; 17:384–390.
6. Lin BS, Lien TF, Chao MR, Lai TY, Chang JC, Chou SJ, Liao HF, Chiou RY. Toxicological and nutraceutical assessments of peanut sprouts as daily supplements to feed Sprague-Dawley rats for 18 weeks. J Sci Food Agric. 2008; 88:2201–2207.
Article
7. Kang HI, Kim JY, Kwon SJ, Park KW, Kang JS, Seo KI. Antioxidative effects of peanut sprout extracts. J Korean Soc Food Sci Nutr. 2010; 39:941–946.
Article
8. Lee SE, Park CH, Bang JK, Seong NS, Chung TY. Comparison on antioxidant potential of several peanut varieties. J Korean Soc Food Sci Nutr. 2004; 33:941–945.
Article
9. Kim HJ, Kang JS, Park HR, Hwang YI. Neuroprotective effects of methanolic extracts from peanut sprouts. J Life Sci. 2010; 20:253–259.
Article
10. Choi JY, Choi DI, Lee JB, Yun SJ, Lee DH, Eun JB, Lee SC. Ethanol extract of peanut sprout induces Nrf2 activation and expression of antioxidant and detoxifying enzymes in human dermal fibroblasts: implication for its protection against UVB-irradiated oxidative stress. Photochem Photobiol. 2013; 89:453–460.
Article
11. Seo JY, Kim SS, Kim HJ, Liu KH, Lee HY, Kim JS. Laxative effect of peanut sprout extract. Nutr Res Pract. 2013; 7:262–266.
Article
12. Poulsen MM, Vestergaard PF, Clasen BF, Radko Y, Christensen LP, Stødkilde-Jørgensen H, Møller N, Jessen N, Pedersen SB, Jørgensen JO. High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes. 2013; 62:1186–1195.
13. Smoliga JM, Colombo ES, Campen MJ. A healthier approach to clinical trials evaluating resveratrol for primary prevention of age-related diseases in healthy populations. Aging (Albany NY). 2013; 5:495–506.
Article
14. Dal-Pan A, Blanc S, Aujard F. Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity. BMC Physiol. 2010; 10:11.
Article
15. Ahn J, Cho I, Kim S, Kwon D, Ha T. Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J Hepatol. 2008; 49:1019–1028.
Article
16. Kim WK, Kang NE, Kim MH, Ha AW. Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes. Nutr Res Pract. 2013; 7:160–165.
Article
17. Kang NE, Ha AW, Woo HW, Kim WK. Peanut sprouts extract (Arachis hypogaea L.) has anti-obesity effects by controlling the protein expressions of PPARγ and adiponectin of adipose tissue in rats fed high-fat diet. Nutr Res Pract. 2014; 8:158–164.
Article
18. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18:499–502.
Article
19. Neovius M, Linné Y, Rossner S. BMI, waist-circumference and waist-hip-ratio as diagnostic tests for fatness in adolescents. Int J Obes (Lond). 2005; 29:163–169.
Article
20. Samadi N, Cembrowski GS, Chan J. Effect of waist circumference on reference intervals of liver-related enzyme tests in apparently healthy adult Mexican Americans, black and white Americans. Clin Biochem. 2007; 40:206–212.
Article
21. Rivera L, Morón R, Zarzuelo A, Galisteo M. Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol. 2009; 77:1053–1063.
Article
22. Wong RH, Howe PR, Buckley JD, Coates AM, Kunz I, Berry NM. Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure. Nutr Metab Cardiovasc Dis. 2011; 21:851–856.
Article
23. Rayalam S, Della-Fera MA, Yang JY, Park HJ, Ambati S, Baile CA. Resveratrol potentiates genistein's antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes. J Nutr. 2007; 137:2668–2673.
Article
24. Park HJ, Yang JY, Ambati S, Della-Fera MA, Hausman DB, Rayalam S, Baile CA. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food. 2008; 11:773–783.
Article
25. Ruhl CE, Everhart JE. Determinants of the association of overweight with elevated serum alanine aminotransferase activity in the United States. Gastroenterology. 2003; 124:71–79.
Article
26. Abidov M, Ramazanov Z, Seifulla R, Grachev S. The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab. 2010; 12:72–81.
Article
27. Ortuño J, Covas MI, Farre M, Pujadas M, Fito M, Khymenets O, Andres-Lacueva C, Roset P, Joglar J, Lamuela-Raventós RM, de la Torre R. Matrix effects on the bioavailability of resveratrol in humans. Food Chem. 2010; 120:1123–1130.
Article
Full Text Links
  • NRP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr