Nutr Res Pract.  2014 Aug;8(4):347-351.

Communicating clinical research to reduce cancer risk through diet: Walnuts as a case example

Affiliations
  • 1CDT Consulting, LLC, 464 Herndon Parkway, Suite 116, Herndon, VA 20171, USA. toner@cdtconsult.com

Abstract

Inflammation is one mechanism through which cancer is initiated and progresses, and is implicated in the etiology of other conditions that affect cancer risk and prognosis, such as type 2 diabetes, cardiovascular disease, and visceral obesity. Emerging human evidence, primarily epidemiological, suggests that walnuts impact risk of these chronic diseases via inflammation. The published literature documents associations between walnut consumption and reduced risk of cancer, and mortality from cancer, diabetes, and cardiovascular disease, particularly within the context of the Mediterranean Diet. While encouraging, follow-up in human intervention trials is needed to better elucidate any potential cancer prevention effect of walnuts, per se. In humans, the far-reaching positive effects of a plant-based diet that includes walnuts may be the most critical message for the public. Indeed, appropriate translation of nutrition research is essential for facilitating healthful consumer dietary behavior. This paper will explore the translation and application of human evidence regarding connections with cancer and biomarkers of inflammation to the development of dietary guidance for the public and individualized dietary advice. Strategies for encouraging dietary patterns that may reduce cancer risk will be explored.

Keyword

Cancer; prevention; walnuts; communication; inflammation

MeSH Terms

Biomarkers
Cardiovascular Diseases
Chronic Disease
Diet*
Diet, Mediterranean
Humans
Inflammation
Juglans*
Mortality
Obesity, Abdominal
Prognosis

Reference

1. World Cancer Research Fund. American Institute for Cancer Research (US). Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Washington, D.C.: American Institute for Cancer Research;2007.
2. Kushi LH, Doyle C, McCullough M, Rock CL, Demark-Wahnefried W, Bandera EV, Gapstur S, Patel AV, Andrews K, Gansler T. American Cancer Society 2010 Nutrition and Physical Activity Guidelines Advisory Committee. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin. 2012; 62:30–67.
Article
3. World Health Organization. Global strategy on diet, physical activity and health [Internet]. [place unknown]: World Health Organization;2014. cited 2014 March 31. Available from: http://www.who.int/dietphysicalactivity/diet/en/.
4. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013; 13:759–771.
Article
5. Zelenko Z, Gallagher EJ. Diabetes and cancer. Endocrinol Metab Clin North Am. 2014; 43:167–185.
Article
6. De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013; 2013:291546.
Article
7. Akbaraly TN, Hamer M, Ferrie JE, Lowe G, Batty GD, Hagger-Johnson G, Singh-Manoux A, Shipley MJ, Kivimäki M. Chronic inflammation as a determinant of future aging phenotypes. CMAJ. 2013; 185:E763–E770.
Article
8. Hardman WE. Walnuts have potential for cancer prevention and treatment in mice. J Nutr. 2014; 144:555S–560S.
Article
9. Nagel JM, Brinkoetter M, Magkos F, Liu X, Chamberland JP, Shah S, Zhou J, Blackburn G, Mantzoros CS. Dietary walnuts inhibit colorectal cancer growth in mice by suppressing angiogenesis. Nutrition. 2012; 28:67–75.
Article
10. Hardman WE, Ion G, Akinsete JA, Witte TR. Dietary walnut suppressed mammary gland tumorigenesis in the C(3)1 TAg mouse. Nutr Cancer. 2011; 63:960–970.
Article
11. Hardman WE, Ion G. Suppression of implanted MDA-MB 231 human breast cancer growth in nude mice by dietary walnut. Nutr Cancer. 2008; 60:666–674.
Article
12. Davis PA, Vasu VT, Gohil K, Kim H, Khan IH, Cross CE, Yokoyama W. A high-fat diet containing whole walnuts (Juglans regia) reduces tumour size and growth along with plasma insulin-like growth factor 1 in the transgenic adenocarcinoma of the mouse prostate model. Br J Nutr. 2012; 108:1764–1772.
Article
13. Carvalho M, Ferreira PJ, Mendes VS, Silva R, Pereira JA, Jerónimo C, Silva BM. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem Toxicol. 2010; 48:441–447.
Article
14. Guasch-Ferré M, Bulló M, Martínez-González MÁ, Ros E, Corella D, Estruch R, Fitó M, Arós F, Wärnberg J, Fiol M, Lapetra J, Vinyoles E, Lamuela-Raventós RM, Serra-Majem L, Pintó X, Ruiz-Gutiérrez V, Basora J, Salas-Salvadó J. PREDIMED study group. Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Med. 2013; 11:164.
Article
15. Bao Y, Han J, Hu FB, Giovannucci EL, Stampfer MJ, Willett WC, Fuchs CS. Association of nut consumption with total and cause-specific mortality. N Engl J Med. 2013; 369:2001–2011.
Article
16. Bao Y, Hu FB, Giovannucci EL, Wolpin BM, Stampfer MJ, Willett WC, Fuchs CS. Nut consumption and risk of pancreatic cancer in women. Br J Cancer. 2013; 109:2911–2916.
Article
17. Jenab M, Ferrari P, Slimani N, Norat T, Casagrande C, Overad K, Olsen A, Stripp C, Tjønneland A, Boutron-Ruault MC, Clavel-Chapelon F, Kesse E, Nieters A, Bergmann M, Boeing H, Naska A, Trichopoulou A, Palli D, Krogh V, Celentano E, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Ocké MC, Peeters PH, Engeset D, Quirós JR, González CA, Martínez C, Chirlaque MD, Ardanaz E, Dorronsoro M, Wallström P, Palmqvist R, Van Guelpen B, Bingham S, San Joaquin MA, Saracci R, Kaaks R, Riboli E. Association of nut and seed intake with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev. 2004; 13:1595–1603.
18. Saberi Hosnijeh F, Peeters P, Romieu I, Kelly R, Riboli E, Olsen A, Tjønneland A, Fagherazzi G, Clavel-Chapelon F, Dossus L, Nieters A, Teucher B, Trichopoulou A, Naska A, Valanou E, Mattiello A, Sieri S, Parr CL, Engeset D, Skeie G, Dorronsoro M, Barricarte A, Sánchez MJ, Ericson U, Sonestedt E, Bueno-de-Mesquita HB, Ros MM, Travis RC, Key TJ, Vineis P, Vermeulen R. Dietary intakes and risk of lymphoid and myeloid leukemia in the European Prospective Investigation into Cancer and Nutrition (EPIC). Nutr Cancer. 2014; 66:14–28.
Article
19. Simon JA, Tanzman JS, Sabaté J. Lack of effect of walnuts on serum levels of prostate specific antigen: a brief report. J Am Coll Nutr. 2007; 26:317–320.
Article
20. Spaccarotella KJ, Kris-Etherton PM, Stone WL, Bagshaw DM, Fishell VK, West SG, Lawrence FR, Hartman TJ. The effect of walnut intake on factors related to prostate and vascular health in older men. Nutr J. 2008; 7:13.
Article
21. Banel DK, Hu FB. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: a meta-analysis and systematic review. Am J Clin Nutr. 2009; 90:56–63.
Article
22. Urpi-Sarda M, Casas R, Chiva-Blanch G, Romero-Mamani ES, Valderas-Martínez P, Salas-Salvadó J, Covas MI, Toledo E, Andres-Lacueva C, Llorach R, García-Arellano A, Bulló M, Ruiz-Gutierrez V, Lamuela-Raventos RM, Estruch R. The Mediterranean diet pattern and its main components are associated with lower plasma concentrations of tumor necrosis factor receptor 60 in patients at high risk for cardiovascular disease. J Nutr. 2012; 142:1019–1025.
Article
23. Ros E, Núñez I, Pérez-Heras A, Serra M, Gilabert R, Casals E, Deulofeu R. A walnut diet improves endothelial function in hypercholesterolemic subjects: a randomized crossover trial. Circulation. 2004; 109:1609–1614.
Article
24. Perez-Martinez P, Lopez-Miranda J, Blanco-Colio L, Bellido C, Jimenez Y, Moreno JA, Delgado-Lista J, Egido J, Perez-Jimenez F. The chronic intake of a Mediterranean diet enriched in virgin olive oil, decreases nuclear transcription factor kappaB activation in peripheral blood mononuclear cells from healthy men. Atherosclerosis. 2007; 194:e141–e146.
25. Zhao G, Etherton TD, Martin KR, Gillies PJ, West SG, Kris-Etherton PM. Dietary alpha-linolenic acid inhibits proinflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects. Am J Clin Nutr. 2007; 85:385–391.
Article
26. Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM. Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr. 2004; 134:2991–2997.
Article
27. Chiang YL, Haddad E, Rajaram S, Shavlik D, Sabaté J. The effect of dietary walnuts compared to fatty fish on eicosanoids, cytokines, soluble endothelial adhesion molecules and lymphocyte subsets: a randomized, controlled crossover trial. Prostaglandins Leukot Essent Fatty Acids. 2012; 87:111–117.
Article
28. Ibarrola-Jurado N, Bulló M, Guasch-Ferré M, Ros E, Martínez-González MA, Corella D, Fiol M, Wärnberg J, Estruch R, Román P, Arós F, Vinyoles E, Serra-Majem L, Pintó X, Covas MI, Basora J, Salas-Salvadó J. PREDIMED Study Investigators. Cross-sectional assessment of nut consumption and obesity, metabolic syndrome and other cardiometabolic risk factors: the PREDIMED study. PLoS One. 2013; 8:e57367.
Article
29. Pan A, Sun Q, Manson JE, Willett WC, Hu FB. Walnut consumption is associated with lower risk of type 2 diabetes in women. J Nutr. 2013; 143:512–518.
Article
30. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-González MA. PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013; 368:1279–1290.
Article
31. Katz DL, Davidhi A, Ma Y, Kavak Y, Bifulco L, Njike VY. Effects of walnuts on endothelial function in overweight adults with visceral obesity: a randomized, controlled, crossover trial. J Am Coll Nutr. 2012; 31:415–423.
Article
32. Ma Y, Njike VY, Millet J, Dutta S, Doughty K, Treu JA, Katz DL. Effects of walnut consumption on endothelial function in type 2 diabetic subjects: a randomized controlled crossover trial. Diabetes Care. 2010; 33:227–232.
Article
33. Fernstrom MH, Reed KA, Rahavi EB, Dooher CC. Communication strategies to help reduce the prevalence of non-communicable diseases: proceedings from the inaugural IFIC Foundation Global Diet and Physical Activity Communications Summit. Nutr Rev. 2012; 70:301–310.
Article
34. Greene GW, Fey-Yensan N, Padula C, Rossi SR, Rossi JS, Clark PG. Change in fruit and vegetable intake over 24 months in older adults: results of the SENIOR project intervention. Gerontologist. 2008; 48:378–387.
Article
35. Olvera N, Bush JA, Sharma SV, Knox BB, Scherer RL, Butte NF. BOUNCE: a community-based mother-daughter healthy lifestyle intervention for low-income Latino families. Obesity (Silver Spring). 2010; 18:Suppl 1. S102–S104.
Article
36. Novotny JA, Gebauer SK, Baer DJ. Discrepancy between the Atwater factor predicted and empirically measured energy values of almonds in human diets. Am J Clin Nutr. 2012; 96:296–301.
Article
37. U.S. National Institutes of Health, ClinicalTrials.gov. The measured energy value of walnuts in the human diet [Internet]. Beltsville (MD): USDA Beltsville Human Nutrition Research Center;2013. updated 2013 September 13. cited 2014 April 7. Available from: http://clinicaltrials.gov/show/NCT01832909.
Full Text Links
  • NRP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr