Nat Prod Sci.  2016 Mar;22(1):13-19. 10.20307/nps.2016.22.1.13.

Anti-osteoporotic and Antioxidant Activities by Rhizomes of Kaempferia parviflora Wall. ex Baker

Affiliations
  • 1College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea. yhk@cnu.ac.kr
  • 2Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
  • 3Department of Food and Nutrition, Hannam University, Daejeon 305-811, Republic of Korea. haedong@hnu.kr

Abstract

In this report, we investigated the antioxidant (peroxyl radical-scavenging and reducing capacities) and anti-osteoporotic activities of extracts and isolated constituents (1 - 16) from the rhizomes of Kaempferia parviflora Wall. ex Baker on pre-osteoclastic RAW 264.7 cells. Compound 5 exhibited significant peroxyl radical-scavenging capacity, with TE value of 8.47 ± 0.52 µM, while compound 13 showed significant reducing capacity, with CUPRAC value of 5.66 ± 0.26 µM, at 10.0 µM. In addition, flavonoid compounds 2, 4, 6, 8, 10, 12, and terpene compound 15 showed significant inhibition of tartrate-resistant acid phosphatase (TRAP) in NF-κB ligand-induced osteoclastic RAW 264.7 cells, with values ranging from 16.97 ± 1.02 to 64.67 ± 2.76%. These results indicated that K. parviflora could be excellent sources for the antioxidant and anti-osteoporotic traditional medicinal plants.

Keyword

Kaempferia parviflora; Zingiberaceae; Antioxidant; Anti-osteoporosis; TRAP

MeSH Terms

Acid Phosphatase
Osteoclasts
Plants, Medicinal
Rhizome*
Zingiberaceae*
Acid Phosphatase

Figure

  • Fig. 1. Chemical structures of compounds 1–16 from K. parviflora (Glc: glucosyl).

  • Fig. 2. Inhibitory effects of compounds 1–16 on TRAP activity in RANKL-induced osteoclastic RAW 264.7 cells. TRAP activity was measured from cultures after 5 days of treatment with RANKL and test compounds (10.0 µM). The treated control was obtained from RAW 264.7 cells cultured with RANKL stimulation and without test compounds. Data are expressed as percentages of the treated control (mean ± SD, n = 3,∗P < 0.05 and∗∗P < 0.01 vs TC. C: control, which was not treated; TC: treated control, which was treated with RANKL). Daidzein (10.0 µM) was use as a positive control (Pos.).


Reference

(1). Hu F. B., Willett W. C. J.Am. Med. Assoc. 2002; 288:2569–2578.
(2). Pietta P. G. J.Nat. Prod. 2000; 63:1035–1042.
(3). Kong Y. Y., Yoshida H., Sarosi I., Tan H. L., Timms E., Capparelli C., Morony S., Oliveira-dos-Santos A. J., Van G., Itie A., Khoo W., Wakeham A., Dunstan C. R., Lacey D. L., Mak T. W., Boyle W. J., Penninger J. M.Nature. 1999; 397:315–323.
(4). Yenjai C., Prasanphen K., Daodeeb S., Wongpanich V., Kittakoop P.Fitoterapia. 2004; 75:89–92.
(5). Sutthanut K., Sripanidkulchai B., Yenjai C., Jay M. J.Chromatogr. A. 2007; 1143:227–233.
(6). Chaipech S., Morikawa T., Ninomiya K., Yoshikawa M., Pongpiriyadacha Y., Hayakawa T., Muraoka O.Chem. Pharm. Bull. 2012; 60:62–69.
(7). Azuma T., Kayano S. I., Matsumura Y., Konishi Y., Tanaka Y., Kikuzaki H.Food Chem. 2011; 125:471–475.
(8). Sawasdee P., Sabphon C., Sitthiwongwanit D., Kokpol U.Phytother. Res. 2009; 23:1792–1794.
(9). Patanasethanont D., Nagai J., Yumoto R., Murakami T., Sutthanut K., Sripanidkulchai B. O., Yenjai C., Takano M. J.Pharma. Sci. 2007; 96:223–233.
(10). Wattanapitayakul S. K., Suwatronnakorn M., Chularojmontri L., Herunsalee A., Niumsakul S., Charuchongkolwongse S., Chansuvanich N. J.Ethnopharmacol. 2007; 110:559–562.
(11). Akase T., Shimada T., Terabayashi S., Ikeya Y., Sanada H., Aburada M. J.Nat. Med. 2011; 65:73–80.
(12). Wong C. S., Tansakul P., Tewtrakul S. J.Ethnopharmacol. 2009; 124:576–580.
(13). Tewtrakul S., Subhadhirasakul S., Kummee S. J.Ethnopharmacol. 2008; 116:191–193.
(14). Wattanapitayakul S. K., Chularojmontri L., Herunsalee A., Charuchongkolwongse S., Chansuvanich N.Fitoterapia. 2008; 79:214–216.
(15). Patanasethanont D., Nagai J., Matsuura C., Fukui K., Sutthanut K., Sripanidkulchai B.O., Yumoto R., Takano M.Eur. J. Pharmacol. 2007; 566:67–74.
(16). Yenjai C., Wanich S.Bioorg. Med. Chem. Lett. 2010; 20:2821–2823.
(17). Aruoma O. I., Deiana M., Jenner A., Halliwell B., Kaur H., Banni S., Corongiu F. P., Dessí M. A., Aeschbach R. J.Agric. Food Chem. 1998; 46:5181–5187.
(18). Kurihara H., Fukami H., Asami S., Toyoda Y., Nakai M., Shibata H., Yao X. S.Biol. Pharm. Bull. 2004; 27:1093–1098.
(19). van de Loosdrecht A. A., Beelen R. H. J., Ossenkoppele G. J., Broekhoven M. G., Langenhuijsen M. M. A.C. J. Immunol. Methods. 1994; 174:311–320.
(20). Lee S. H., Ding Y., Yan X. T., Kim Y. H., Jang H. D. J.Nat. Prod. 2013; 76:615–620.
(21). Vichitphan S., Vichitphan K., Sirikhansaeng P.KMITL Sci. Tech. J. 2007; 7:97–105.
(22). Horikawa T., Shimada T., Okabe Y., Kinoshita K., Koyama K., Miyamoto K. I., Ichinose K., Takahashi K., Aburada M.Biol. Pharm. Bull. 2012; 35:686–692.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr