Korean J Physiol Pharmacol.  1997 Feb;1(1):27-34.

Pharmacological evidence that cromakalim inhibits Ca2+ release from intracellular stores in porcine coronary artery

Affiliations
  • 1Department of Pharmacology, College of Medicine, Pusan National University, Pusan South Korea.

Abstract

In the present study, it was aimed to further identify the intracellular action mechanism of cromakalim and levcromakaliin in the porcine coronary artery. In intact porcine coronary arterial strips loaded with fura-2/AM, acetylcholine caused an increase in intracellular free Ca2+ ((Ca2+)-i) in association with a contraction in a concentration-dependent manner. Cromakalim (1 micrometer) caused a reduction in acetylcholine-induced increased (Ca2+)-i not only in the normal physiological salt solution (PSS) but also in Ca2+ -free PSS (containing 1mM EGTA). In the skinned strips prepared by exposure of tissue to 20 micrometer beta-escin, inositol 1,4,5-trisphosphate (IP-3) evoked an increase in (Ca2+)-i but it was without effect on the intact strips. The IP-3-induced increase in (Ca2+)-i was inhibited by cromakalim by 78% and levcromakalim by 59% (1 micrometer, each). Pretreatment with glibenclamide (a blocker of ATP-sensitive K+ channels, 10 micrometer and apamin (a blocker of small conductance Ca2+/-activated K+ channels, 1 micrometer strongly blocked the effect of cromakalim and levcromakalim. However, charybdotoxin (a blocker of large conductance Ca2+ -activated K+ channels, 1-micrometer) was without effect. In addition, cromakalim inhibited the GTP-gamma-S (100 micrometer, nonhydrolysable analogue of GTP)-induced increase in (Ca2+)-i. Based on these results, it is suggested that cromakalim and levcromakalim exert a potent vasorelaxation, in part, by acting on the K+ channels of the intracellular sites (e.g., sarcoplasmic reticulum membrane), thereby, resulting in decrease in release of Ca2+ from the intracellular storage site.

Keyword

Intracellular Ca2+ release; K+ channel opener

MeSH Terms

Acetylcholine
Apamin
Charybdotoxin
Coronary Vessels*
Cromakalim*
Escin
Glyburide
Inositol 1,4,5-Trisphosphate
Sarcoplasmic Reticulum
Skin
Vasodilation
Acetylcholine
Apamin
Charybdotoxin
Cromakalim
Escin
Glyburide
Inositol 1,4,5-Trisphosphate
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr