J Korean Assoc Maxillofac Plast Reconstr Surg.  2008 Jan;30(1):60-71.

The three dimensional finite element analysis of the stress distribution according to the thread designs and the marginal bone loss of the implants

  • 1Department of Dentistry, College of Medicine, Inha University, Korea. kik@inha.ac.kr
  • 2Department of Naval Achi and Ocean Eng., Inha University, Korea.


The objective of this study is to evaluate the stress distribution according to the thread design and the marginal bone loss of a single unit dental implant under the axial and offset-axial loading by three dimensional finite element analysis. The implants used had the diameter of 5mm and 4mm with 13mm in length and prosthesis with a conical type which is 6mm in height and 12mm in diameter. The thread designs were triangular, square and buttress. In the three dimensional finite element model with 15*15*20mm hexahedron and 2mm cortical thickness, implants were placed with crown to root ratio 7:12, 10:9, 13:6 and 16:3. And additionally the axial force of 100N were applied into 0mm, 2mm and 4mm away from the center of the implants. The results were as follows 1. The maximum von-Mises stress in cortical bone was concentrated to cervical area of implant, and in cancellous bone, apical portion. 2. Comparing the von-Mises stresses in cortical bone of 2mm and 4mm offset loading with central axial loading, it were increased to 3 and 5 times in diameter 4mm implant, and 2 and 4 times, in diameter 5mm implant. 3. The square threads were more effective than the triangular and butress as the longer diameter, the offset loading, and the worse crown to root ratio. 4. The von-Mises stresses were relatively stable until crown to root ratio 13:6, but it was suddenly increased at 16:3. From the results of this study, minimum requirement of crown to root ratio of implant is 2:1, and in the respect of crown to root ratio, diameter and offset loading, square threads are more effective than triangular and buttress threads.


Implant; Thread; Crown to root ratio; Finite element analysis

MeSH Terms

Dental Implants
Finite Element Analysis
Prostheses and Implants
Dental Implants
Full Text Links
export Copy
  • Twitter
  • Facebook
Similar articles
Copyright © 2023 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr