2. Mohagheghi M, editor. Annual Report of Tehran Cancer Registry 1999. Tehran: The Cancer Institute Publication;2004.
3. Mohagheghi M, Musavi Jarahi A, Shariat Torbaghan S, Zeraati H, editors. Annual Report of Tehran University of Medical Sciences District Cancer Registry 1997. Tehran: The Cancer Institute Publication;1998.
4. Biglarian A, Hajizadeh E, Gouhari MR, Khodabakhshi R. Survival analysis of patients with gastric adenocarcinomas and factors related. Kowsar Med J. 2008; 12:337–347.
5. Zeraati H, Mahmoudi M, Kazemnejad A, Mohammad K. Postoperative survival in gastric cancer patients and its associated factors: a time dependent covariates model. Iranian J Public Health. 2006; 35:40–46.
6. Barnard J, Meng XL. Applications of multiple imputation in medical studies: from AIDS to NHANES. Stat Method Med Res. 1999; 8:17–36.
Article
7. Burton A, Altman DG. Missing covariate data within cancer prognostic studies: a review of current reporting and proposed guidelines. Br J Cancer. 2004; 91:4–8.
Article
8. Pourhoseingholi MA, Hajizadeh E, Moghimi Dehkordi B, Safaee A, Abadi A, Zali MR. Comparing Cox regression and parametric models for survival of patients with gastric carcinoma. Asian Pac J Cancer Prev. 2007; 8:412–416.
9. Roushanaei G, Kazemnejad A, Sedighi S. Postoperative survival estimation of gastric cancer patients in cancer institute of Tehran, Imam Khomeini hospital and its relative factors. Sci J Hamadan Univ Med Sci. 2010; 17:13–18.
10. Im WJ, Kim MG, Ha TK, Kwon SJ. Tumor size as a prognostic factor in gastric cancer patient. J Gastric Cancer. 2012; 12:164–172.
Article
11. Little RJ, Rubin DB, editors. Statistical Analysis with Missing Data. New York: John Wiley & Sons;2002.
12. Kleinbaum DG, Klein M, editors. Survival Analysis. 3rd ed. New York: Springer;2012.
13. Barzi F, Woodward M. Imputations of missing values in practice: results from imputations of serum cholesterol in 28 cohort studies. Am J Epidemiol. 2004; 160:34–45.
Article
14. Javaras KN, Van Dyk DA. Multiple imputation for incomplete data with semicontinuous variables. J Am Stat Assoc. 2003; 98:703–715.
Article
15. Tabachnick BG, Fidell LS, editors. Using Multivariate Statistics. 6th ed. Needham Heights (MA): Allyn & Bacon;2012.
16. Little RJ. A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc. 1988; 83:1198–1202.
Article
17. Baneshi MR, Talei A. Impact of imputation of missing data on estimation of survival rates: an example in breast cancer. Iranian J Cancer Prev. 2012; 3:127–131.
18. Altman DG, Bland JM. Missing data. BMJ. 2007; 334:424.
Article
19. Peng CYJ, Zhu J. Comparison of two approaches for handling missing covariates in logistic regression. Educ Psychol Meas. 2008; 68:58–77.
Article
20. Molenberghs G, Williams PL, Lipsitz SR. Prediction of survival and opportunistic infections in HIV-infected patients: a comparison of imputation methods of incomplete CD4 counts. Stat Med. 2002; 21:1387–1408.
Article
21. Marshall A, Altman DG, Holder RL. Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study. BMC Med Res Methodol. 2010; 10:112.
Article
22. Marshall A, Altman DG, Royston P, Holder RL. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Med Res Methodol. 2010; 10:7.
Article