J Korean Med Assoc.  2004 Oct;47(10):926-932. 10.5124/jkma.2004.47.10.926.

Stem Cell Therapy for Ischemic Heart Disease: A Status Report

Affiliations
  • 1Department of Internal Medicine, Korea University College of Medicine, Anam Hospital, Korea. dslmd@kumc.or.kr

Abstract

Myocardial infarction is the leading cause of congestive heart failure and deaths in developed countries. Current therapy is limited to the prevention of the progression of ventricular remodeling. The transplantation of stem cells into the injured myocardium is a novel and promising approach for the restoration of myocardial function. Various animal studies have suggested the potential of stem cell transplantation to regenerate myocardium and to improve cardiac function. Recently early phase I clinical studies show that stem cell therapy may have beneficial effects on ventricular remodeling. In this article, the state of the art in both laboratory and clinic on myocardial regeneration with various types of stem cells is introduced. Finally the current and intrinsic limitations of stem cell therapy are discussed along with future directions for research on stem cell therapy for ischemic heart diseases.

Keyword

Myocardial infarction; Stem cell; Adverse effects; Differentiation; Mechanism; Delivery

MeSH Terms

Animals
Developed Countries
Heart Failure
Myocardial Infarction
Myocardial Ischemia*
Myocardium
Regeneration
Stem Cell Transplantation
Stem Cells*
Ventricular Remodeling

Reference

1. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Ogawa S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999. 103:697–705.
Article
2. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Jia ZQ, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 1999. 100:19 Suppl. 247–256.
Article
3. Wang JS, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N, Chiu RC. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg. 2000. 120:999–1005.
Article
4. Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Martin BJ, et al. Mesenchymal stem cell implantation in a swain myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002. 73:1919–1926.
Article
5. Toma C, Pittenger MF, Cahill KS, Myrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to cardiomyoycte phenotype in the adult murine heart. Circulation. 2002. 105:93–98.
Article
6. Liechty KW, Mackenize TC, Shaaban AF, Radu A, Moseley AM, Flake AW, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000. 6:1282–1286.
Article
7. Tomita S, Mickle DA, Weisel RD, Jia ZQ, Tumiati LC, Li RK, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg. 2001. 122:699–705.
Article
8. Wang JS, Shum-Tim D, Chedrawy E, Chiu RC. The coronary delivery of marrow stromal cells for myocardial regeneration. J Thorac Cardiovasc Surg. 2001. 122:699–705.
Article
9. Behfar A, Zingman LV, Hodgson DM, Rauzier JM, Kane GC, Puceat M, et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J. 2002. 106:1558–1566.
Article
10. Iijima Y, Nagai T, Mizukami M, Matsuura K, Ogura T, Komuro I, et al. Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes. FASEB J. 2003. 17:1361–1363.
Article
11. Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Dimmeler S, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyoyctes. Circulation. 2003. 107:1024–1032.
Article
12. Bittira B, Kuang JQ, Al-Khaldi A, Shum-Tim D, Chiu RC. In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann Thorac Surg. 2002. 74:1154–1160.
Article
13. Ren G, Michael LH, Entman ML, Frangogiannis NG. Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem. 2002. 50:71–79.
Article
14. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Itescu S, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001. 7:430–436.
Article
15. Isner JM. Myocardial gene therapy. Nature. 2002. 415:234–239.
Article
16. Ming Z, Danielle M, Veronica P, Yasushi F, Kenneth W, Charles EM. Cardiomyocyte grafting for cardiac repair: Graft cell death and anti-death strategies. J Mol Cell Cardiol. 2001. 33:907–921.
Article
17. Gordon DW. Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation. 2003. 75:679–685.
Article
18. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Anversa P, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001. 410:701–705.
Article
19. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Goodell MA, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001. 107:1395–1402.
Article
20. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Verfaillie CM, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002. 418:41–49.
Article
21. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol. 2002. 30:892–904.
Article
22. Morrison SJ, Prowse KR, Ho P, Weissman IL. Telomerase activity in hematopoietic cells is associated with self-renewal potential. immunity. 1996. 5:207–216.
Article
23. Yukari M, Morayma R. In vivo and in vitro differentiation of myocytes from human bone marrow-derived muplipotent progentior cells. Exp Hematol. 2003. 31:1323–1330.
24. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Anversa P, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003. 114:763–776.
Article
25. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Anversa P, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA. 2001. 98:10344–10349.
Article
26. Menasche P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Marolleau JP, et al. Myoblast transplantation for heart failure. Lancet. 2001. 357:279–280.
Article
27. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Wernet P, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002. 106:1913–1918.
Article
28. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Zeiher AM, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002. 106:3009–3017.
Article
29. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells. Transplantation. 2003. 75:389–397.
Article
30. Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O'Neill WW. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med. 2000. 343:915–922.
Article
31. Rioufol G, Finet G, Ginon I, Andre-Fouet X, Rossi R, Tabib A, et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation. 2002. 106:804–808.
Article
32. Tomoda H, Aoki N. Bone marrow stimulation and left ventricular function in acute myocardial infarction. Clin Cardiol. 2003. 26:455–457.
Article
33. Gutierrez-Delgado F, Bensinger W. Safety of granulocyte colony-stimulating factor in normal donors. Curr Opin Hematol. 2001. 8:155–160.
Article
34. Zhang YM, Hartzell C, Narlow M, Dudley SC Jr. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation. 2002. 106:1294–1299.
Article
35. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Scott EW, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002. 416:542–545.
Article
36. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature. 2002. 416:545–548.
Article
Full Text Links
  • JKMA
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr