J Korean Diabetes.  2014 Sep;15(3):142-145. 10.4093/jkd.2014.15.3.142.

The Role of the Kidney in Glucose Metabolism

Affiliations
  • 1Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea. bard95@hanmail.net

Abstract

It is well known that the kidney is important for maintaining glucose homeostasis in vivo. However, the physiological role of the kidney in glucose metabolism is typically underestimated. Recently, a new class of anti-diabetic medications that affect the renal glucose regulatory mechanism was introduced into the market, sparking the interest of many researchers to better understand this mechanism. In this article, I briefly describe the role of the kidney in glucose metabolism and the changes of its function in patients with diabetes mellitus.

Keyword

Kidney; Glucose; Type 2 diabetes mellitus; Sodium glucose cotransporter 2; Gluconeogenesis

MeSH Terms

Diabetes Mellitus
Diabetes Mellitus, Type 2
Gluconeogenesis
Glucose*
Homeostasis
Humans
Kidney*
Metabolism*
Glucose

Figure

  • Fig. 1. Sodium glucose cotransporters (SGLTs) in the kidney. Adapted from Santer R, et al. Clin J Am Soc Nephrol 2010;5:133-41[12].


Reference

1. Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodiumglucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011; 32:515–31.
Article
2. Holt RI, Cockram C, Flyvbjerg A, Goldstein BJ. Goldstein Textbook of Diabetes. 4th ed.Hoboken: Wiley-Blackwell;2010.
3. Gerich JE. Role of the kidney in normal glucose homeostasis and in thehyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med. 2010; 27:136–42.
4. Gerich JE. Physiology of glucose homeostasis. Diabetes ObesMetab. 2000; 2:345–50.
Article
5. Stumvoll M, Meyer C, Mitrakou A, Nadkarni V, Gerich JE. Renal glucoseproduction and utilization: new aspects in humans. Diabetologia. 1997; 40:749–57.
6. Meyer C, Dostou JM, Welle SL, Gerich JE. Role of human liver, kidney, andskeletal muscle in postprandial glucose homeostasis. Am J PhysiolEndocrinolMetab. 2002; 282:E419–27.
7. Stumvoll M, Meyer C, Perriello G, Kreider M, Welle S, Gerich J. Human kidneyand liver gluconeogenesis: evidence for organ substrate selectivity. Am JPhysiol. 1998; 274(5 Pt 1):E817–26.
8. Meyer C, Dostou JM, Gerich JE. Role of the human kidney in glucosecounterregulation. Diabetes. 1999; 48:943–8.
9. Gerich JE. Hepatorenal glucose reciprocity in physiologic and pathologicconditions. Diabetes NutrMetab. 2002; 15:298–302.
10. Brown GK. Glucose transporters: structure, function and consequences ofdeficiency. J Inherit Metab Dis. 2000; 23:237–46.
11. Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease.J Intern Med. 2007; 261:32–43.
12. Santer R, Calado J. Familial renal glucosuria and SGLT2: from a mendeliantrait to a therapeutic target. Clin J Am SocNephrol. 2010; 5:133–41.
13. Johansen K, Svendsen PA, L⊘rup B. Variations in renal threshold for glucosein Type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1984; 26:180–2.
Article
14. Wright EM. Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol. 2001; 280:F10–8.
Article
15. Hediger MA, Rhoads DB. Molecular physiology of sodiumglucose cotransporters. Physiol Rev. 1994; 74:993–1026.
16. Santer R, Kinner M, Lassen CL, Schneppenheim R, Eggert P, Bald M, Brodehl J, Daschner M, Ehrich JH, Kemper M, Li Volti S, Neuhaus T, Skovby F, Swift PG, Schaub J, Klaerke D. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J AmSocNephrol. 2003; 14:2873–82.
Article
17. Meyer C, Stumvoll M, Nadkarni V, Dostou J, Mitrakou A, Gerich J. Abnormalrenal and hepatic glucose metabolism in type 2 diabetes mellitus. J Clin Invest. 1998; 102:619–24.
18. Meyer C, Woerle HJ, Dostou JM, Welle SL, Gerich JE. Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. Am J PhysiolEndocrinolMetab. 2004; 287:E1049–56.
Article
19. Landau BR. Gluconeogenesis and pyruvate metabolism in rat kidney, in vitro. Endocrinology. 1960; 67:744–51.
20. Krebs HA, Speake RN, Hems R. Acceleration of renal gluconeogenesis by ketone bodies and fatty acids. Biochem J. 1965; 94:712–20.
Article
21. Williamson JR. Mechanism for the stimulation in vivo of hepaticgluconeogenesis by glucagon. Biochem J. 1966; 101:11C–14C.
22. Wolf S, Rave K, Heinemann L, Roggen K. Renal glucose excretion and tubularreabsorption rate related to blood glucose in subjects with type 2 diabetes with a critical reappraisal of the "renal glucose threshold" model. Horm Metab Res. 2009; 41:600–4.
23. Mogensen CE. Maximum tubular reabsorption capacity for glucose and renalhemodynamcis during rapid hypertonic glucose infusion in normal and diabeticsubjects. Scand J Clin Lab Invest. 1971; 28:101–9.
24. Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucosetransporters in human renal proximal tubular cells isolated from the urine ofpatients with non-insulin-dependent diabetes. Diabetes. 2005; 54:3427–34.
25. Vestri S, Okamoto MM, de Freitas HS, Aparecida Dos Santos R, Nunes MT, Morimatsu M, Heimann JC, Machado UF. Changes in sodium or glucose filtration ratemodulate expression of glucose transporters in renal proximal tubular cells ofrat. J MembrBiol. 2001; 182:105–12.
Full Text Links
  • JKD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr