Infect Chemother.  2016 Mar;48(1):1-11. 10.3947/ic.2016.48.1.1.

Clinical Usefulness of Arbekacin

Affiliations
  • 1Department of Internal Medicine, Wonkwang University Medical School, Iksan, Korea.
  • 2Department of Internal Medicine, Chonbuk National University, Jeonju, Korea. lcsmd@jbnu.ac.kr
  • 3Research Institute of Clinical Medicine, Chonbuk National University, Jeonju, Korea.
  • 4Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea.

Abstract

Arbekacin is a broad-spectrum aminoglycoside used to treat methicillin-resistant Staphylococcus aureus (MRSA). Arbekacin has antibacterial activities against high-level gentamicin-resistant Enterococci, multidrug-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii et al. Here, we reviewed in vitro data on arbekacin in Staphylococci and Gram-negative microorganisms. We also reviewed clinical studies for clinical efficacy and microbiologic efficacy data in patients with identified MRSA and suspected MRSA infections. The overall clinical efficacy ranged from 66.7% to 89.7%. The microbiologic efficacy rate ranged from 46.2% to 83%. In comparative studies between arbekacin and glycopeptides, arbekacin was similar to other glycopeptides with respect to clinical and microbiological efficacy rates. Combination trials with other antibiotics suggest that arbekacin will be a promising strategy to control Enterococcus spp. multi-drug resistant P. aeruginosa. The major adverse reaction was nephrotoxicity/hepatotoxicity, but patients recovered from most adverse reactions without any severe complications. Based on these results, arbekacin could be a good alternative to vancomycin/teicoplanin in MRSA treatment. Finally, therapeutic drug monitoring is recommended to maximize clinical efficacy and decrease nephrotoxicity.

Keyword

Arbekacin; Methicillin-resistant Staphylococcus aureus; Glycopeptides; Alternative; Antibiotics

MeSH Terms

Acinetobacter baumannii
Anti-Bacterial Agents
Drug Monitoring
Enterococcus
Glycopeptides
Humans
Methicillin-Resistant Staphylococcus aureus
Pseudomonas aeruginosa
Anti-Bacterial Agents
Glycopeptides

Reference

1. Matsumoto T. Arbekacin: another novel agent for treating infections due to methicillin-resistant Staphylococcus aureus and multidrug-resistant Gram-negative pathogens. Clin Pharmacol. 2014; 6:139–148.
2. Matsuhashi Y, Yamamoto H. The enzymatic mechanisms of resistance to aminoglycoside antibiotics in methicillin-cephem-resistant Staphylococcus aureus. Jpn J Antibiot. 1988; 41:523–529.
3. Aoki Y. Bactericidal activity of arbekacin against methicillin-resistant Staphylococcus aureus. Comparison with that of vancomycin. Jpn J Antibiot. 1994; 47:640–646.
4. Sato R, Tanigawara Y, Kaku M, Aikawa N, Shimizu K. Pharmacokinetic-pharmacodynamic relationship of arbekacin for treatment of patients infected with methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2006; 50:3763–3769.
Article
5. Watanabe T, Ohashi K, Matsui K, Kubota T. Comparative studies of the bactericidal, morphological and post-antibiotic effects of arbekacin and vancomycin against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 1997; 39:471–476.
Article
6. Hamada Y, Tamura K, Koyama I, Kuroyama M, Yago K, Sunakawa K. Clinical efficacy of arbekacin for Gram-negative bacteria. J Infect Chemother. 2011; 17:876–879.
Article
7. Nakamura I, Yamaguchi T, Tsukimori A, Sato A, Fukushima S, Matsumoto T. New options of antibiotic combination therapy for multidrug-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2015; 34:83–87.
Article
8. Zapor MJ, Barber M, Summers A, Miller GH, Feeney LA, Eberly LE, Wortmann G. In vitro activity of the aminoglycoside antibiotic arbekacin against Acinetobacter baumannii-calcoaceticus isolated from war-wounded patients at Walter Reed Army Medical Center. Antimicrob Agents Chemother. 2010; 54:3015–3017.
Article
9. Ochiai M, Tanimura H, Noguchi K, Takifuji K, Konishi R, Ohkouchi N, Kouno N, Ohnishi H, Shimada K, Kasitani M, Fukiage O, Ura S, Jouhata K, Kobayashi Y, Dounishi H, Aoki Y. Clinical effect of arbekacin on MRSA infections after gastrointestinal surgery. Jpn J Antibiot. 1994; 47:837–843.
10. Suzuki K. Efficacy and safety of arbekacin for staphylococcal infection in the NICU. Pediatr Int. 2003; 45:301–306.
Article
11. Aikawa N, Kohno S, Kaku M, Watanabe A, Yamaguchi K, Tanigawara Y. An open clinical study of arbekacin 200mg qd in patients infected with methicillin-resistant Staphylococcus aureus (MRSA)-A clinical pharmacology study-. Jpn J Chemother. 2008; 56:299–312.
12. Yamamoto Y, Izumikawa K, Hashiguchi K, Fukuda Y, Kobayashi T, Kondo A, Inoue Y, Morinaga Y, Nakamura S, Imamura Y, Miyazaki T, Kakeya H, Yanagihara K, Kohno S. The efficacy and safety of high-dose arbekacin sulfate therapy (once-daily treatment) in patients with MRSA infection. J Infect Chemother. 2012; 18:241–246.
Article
13. Hwang JH, Lee JH, Moon MK, Kim JS, Won KS, Lee CS. The usefulness of arbekacin compared to vancomycin. Eur J Clin Microbiol Infect Dis. 2012; 31:1663–1666.
Article
14. Hwang JH, Lee JH, Moon MK, Kim JS, Won KS, Lee CS. The efficacy and safety of arbekacin and vancomycin for the treatment in skin and soft tissue MRSA infection: preliminary study. Infect Chemother. 2013; 45:62–68.
Article
15. Hwang JH, Lee JH, Kim JS, Hwang JH, Lee CS. Arbekacin as an alternative drug to teicoplanin for the treatment of MRSA infection. Yonsei Med J. 2016; [in press].
Article
16. Wie SH, Kang JH, Huh DH, Lee DG, Kim SI, Kim YR, Choi JH, Kim JH, Yoo JH, Hur JK, Shin WS, Kang MW. Antimicrobial activities of Arbekacin against clinical isolates of Staphylococcus aureus and coagulase-negative Staphylococcus species. Korean J Infect Dis. 2001; 33:254–260.
17. Lee J, Kim CK, Roh KH, Lee H, Yum JH, Yong D, Lee K, Chong Y. In vitro activity of arbekacin against clinical isolates of Staphylococcus species and gram-negative bacilli. Korean J Lab Med. 2007; 27:292–297.
Article
18. Ha SH, Jeong SH, Jeong TS, Seo DY, Chang C, Nam HJ, Baek YW, Ji JH. Antimicrobial susceptibilites of glycopeptides, arbekacin and quinupristin/dalfopristin against Staphylococcal aureus isolates. Korean J Infect Dis. 2001; 33:261–265.
19. Watanabe A, Yanagihara K, Matsumoto T, Kohno S, Aoki N, Oguri T, Sato J, Muratani T, Yagisawa M, Ogasawara K, Koashi N, Kozuki T, Komoto A, Takahashi Y, Tsuji T, Terada M, Nakanishi K, Hattori R, Hirako Y, Maruo A, Minamitani S, Morita K, Wakamura T, Sunakawa K, Hanaki H, Ohsaki Y, Honda Y, Sasaoka S, Takeda H, Ikeda H, Sugai A, Miki M, Nakanowatari S, Takahashi H, Utagawa M, Kobayashi N, Takasaki J, Konosaki H, Aoki Y, Shoji M, Goto H, Saraya T, Kurai D, Okazaki M, Kobayashi Y, Katono Y, Kawana A, Saionji K, Miyazawa N, Sato Y, Watanuki Y, Kudo M, Ehara S, Tsukada H, Imai Y, Watabe N, Aso S, Honma Y, Mikamo H, Yamagishi Y, Takesue Y, Wada Y, Nakamura T, Mitsuno N, Mikasa K, Kasahara K, Uno K, Sano R, Miyashita N, Kurokawa Y, Takaya M, Kuwabara M, Watanabe Y, Doi M, Shimizu S, Negayama K, Kadota J, Hiramatsu K, Morinaga Y, Honda J, Fujita M, Iwata S, Iwamoto A, Ezaki T, Onodera S, Kusachi S, Tateda K, Tanaka M, Totsuka K, Niki Y, Matsumoto T. Nationwide surveillance of bacterial respiratory pathogens conducted by the Surveillance Committee of Japanese Society of Chemotherapy, Japanese Association for Infectious Diseases, and Japanese Society for Clinical Microbiology in 2009: general view of the pathogens' antibacterial susceptibility. J Infect Chemother. 2012; 18:609–620.
Article
20. You I, Kariyama R, Zervos MJ, Kumon H, Chow JW. In-vitro activity of arbekacin alone and in combination with vancomycin against gentamicin- and methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 2000; 36:37–41.
Article
21. Lee JY, Oh WS, Ko KS, Heo ST, Moon CS, Ki HK, Kiem S, Peck KR, Song JH. Synergy of arbekacin-based combinations against vancomycin hetero-intermediate Staphylococcus aureus. J Korean Med Sci. 2006; 21:188–192.
Article
22. Akins RL, Rybak MJ. In vitro activities of daptomycin, arbekacin, vancomycin, and gentamicin alone and/or in combination against glycopeptide intermediate-resistant Staphylococcus aureus in an infection model. Antimicrob Agents Chemother. 2000; 44:1925–1929.
Article
23. Beauchamp D, Pellerin M, Gourde P, Pettigrew M, Bergeron MG. Effects of daptomycin and vancomycin on tobramycin nephrotoxicity in rats. Antimicrob Agents Chemother. 1990; 34:139–147.
Article
24. Kak V, You I, Zervos MJ, Kariyama R, Kumon H, Chow JW. In-vitro synergistic activity of the combination of ampicillin and arbekacin against vancomycin-and high-level gentamicin-resistant Enterococcus faecium with the aph(2")-Id gene. Diagn Microbiol Infect Dis. 2000; 37:297–299.
Article
25. Kak V, Donabedian SM, Zervos MJ, Kariyama R, Kumon H, Chow JW. Efficacy of ampicillin plus arbekacin in experimental rabbit endocarditis caused by an Enterococcus faecalis strain with high-level gentamicin resistance. Antimicrob Agents Chemother. 2000; 44:2545–2546.
Article
26. Matsumoto T, Hanaki H, Kimura T, Nemoto M, Higashihara M, Yokota H, Oda S, Akiyama N, Miyao N, Yoshida M, Yukioka T, Soma K, Ohyashiki K, Suzuki Y, Arai T, Ikegami K, Ichiwata T, Otsuka Y, Kobayashi M, Totsuka K, Sunakawa K. ABK Dose Finding Study Group. Clinical efficacy and safety of arbekacin sulfate in patients with MRSA sepsis or pneumonia: a multi-institutional study. J Infect Chemother. 2013; 19:128–137.
Article
27. Sader HS, Rhomberg PR, Farrell DJ, Jones RN. Arbekacin activity against contemporary clinical bacteria isolated from patients hospitalized with pneumonia. Antimicrob Agents Chemother. 2015; 59:3263–3270.
Article
28. Rajenderan S, Balaji V, Anandan S, Sahni RD, Tansarli GS, Falagas ME. Determination of MIC distribution of arbekacin, cefminox, fosfomycin, biapenem and other antibiotics against gram-negative clinical isolates in South India: a prospective study. PLoS One. 2014; 9:e103253.
Article
29. Katou K, Nakamura A, Kato T, Tonegawa K, Kutsuna T, Niwa T, Morita H, Itoh M. Combined effects of panipenem and aminoglycosides on methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in vitro. Chemotherapy. 2005; 51:387–391.
Article
30. Araoka H, Baba M, Tateda K, Ishii Y, Oguri T, Okuzumi K, Oishi T, Mori S, Mitsuda T, Moriya K, Nakamori Y, Ohmagari N, Yamaguchi K, Yoneyama A. ABX Combination Therapy Study Group. In vitro combination effects of aztreonam and aminoglycoside against multidrug-resistant Pseudomonas aeruginosa in Japan. Jpn J Infect Dis. 2012; 65:84–87.
Article
31. Hwang JH, Moon MK, Kim JS, Won KS, Lee CS. Drug use evaluation of arbekacin. J Korean Soc Health Syst Pharm. 2012; 29:48–55.
Article
32. Miura K, Nakagawa M, Takahashi H, Uchino Y, Kodaira H, Iriyama N, Sakagami M, Ohtake S, Kobayashi S, Hojo A, Kurita D, Kobayashi Y, Kusuda M, Hirabayashi Y, Hatta Y, Takei M. Clinical efficacy and safety of arbekacin for high-risk infections in patients with hematological malignancies. Int J Hematol. 2016; 103:334–340.
Article
33. Shimizu K, Aikawa N, Tanigawara Y, Kaku M, Imae M, Nishizawa N, Nakamura H. Actual use of anti-MRSA drugs in Japan with the focus on arbekacin. Jpn J Chemother. 2003; 51:717–730.
34. Hwang JH, Lee JH, Hwang JH, Chung KM, Lee EJ, Yoon YJ, Moon MK, Kim JS, Won KS, Lee CS. Comparison of arbekacin and vancomycin in treatment of chronic suppurative otitis media by methicillin resistant Staphylococcus aureus. J Korean Med Sci. 2015; 30:688–693.
Article
35. Araoka H, Baba M, Takagi S, Matsuno N, Ishiwata K, Nakano N, Tsuji M, Yamamoto H, Seo S, Asano-Mori Y, Uchida N, Masuoka K, Wake A, Taniguchi S, Yoneyama A. Monobactam and aminoglycoside combination therapy against metallo-beta-lactamase-producing multidrug-resistant Pseudomonas aeruginosa screened using a 'break-point checkerboard plate'. Scand J Infect Dis. 2010; 42:231–233.
Article
36. Iwashita Y, Enokiya T, Suzuki K, Yokoyama K, Yamamoto A, Ishikura K, Okuda M, Imai H. Arbekacin treatment of a patient infected with a Pseudomonas putida producing a metallo-beta-lactamase. J Intensive Care. 2013; 1:3.
37. Lee K, Park AJ, Kim MY, Lee HJ, Cho JH, Kang JO, Yong D, Chong Y. KONSAR group. Metallo-β-lactamase-producing Pseudomonas spp. in Korea: high prevalence of isolates with VIM-2 type and emergence of isolates with IMP-1 type. Yonsei Med J. 2009; 50:335–339.
Article
38. Hamada Y, Suematsu H, Hirai J, Yamagishi Y, Mikamo H. Evaluation of six cases of arbekacin inhalation for pneumonia. Jpn J Antibiot. 2014; 67:233–239.
39. Kawano H, Tanigawara Y. Postmarketing surveillance review of arbekacin sulfate in patients with therapeutic drug monitoring. Jpn J Ther Drug Monit. 2010; 27:55–71.
40. Okada K, Kimura T, Mikamo H, Kasahara K, Seki M, Takakura S, Tokimatsu I, Ohmagari N, Takahashi Y, Matsumoto K, Igarashi M, Kobayashi M, Hamada Y, Mochizuki T, Kimura M, Nishi Y, Tanigawara Y, Takesue Y. Japanese Society of Chemotherapy. Japanese Society of Therapeutic Drug Monitoring. Clinical practice guidelines for therapeutic drug monitoring of arbekacin: a consensus review of the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. J Infect Chemother. 2014; 20:1–5.
Article
Full Text Links
  • IC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr