Infect Chemother.  2010 Jun;42(3):171-174. 10.3947/ic.2010.42.3.171.

Prevalence of Inducible Macrolide-Lincosamide-Streptogramin B (MLS(B)) Resistance in Erythromycin-Resistant Staphylococci

Affiliations
  • 1Department of Laboratory Medicine, Gachon University Gil Hospital, Incheon, Korea. seoyh@gilhospital.com

Abstract

BACKGROUND
Inducible MLS(B) (macrolide-lincosamide-streptogramin B) resistance in staphylococci is not detected by standard susceptibility test methods. Failure to identify inducible MLS(B) resistance may lead to clinical failure during clindamycin therapy. We determined the prevalence of inducible MLS(B) resistance in erythromycin-resistant staphylococcal isolates.
MATERIALS AND METHODS
We evaluated all 2,792 non-duplicate staphylococcal strains: 1,402 Staphylococcus aureus and 1,390 coagulase-negative staphylococci (CoNS) isolated from May 2008-June 2009 at one-unoversity hospital. Testing for inducible MLS(B) was accomplished by the disk approximation test (D-test) in accordance with the recommendations of the Clinical and Laboratory Standards Institute (CLSI).
RESULTS
Of the 2,792 staphylococcal isolates, 892 S. aureus isolates and 740 CoNS isolates were resistant to erythromycin. Among the 892 erythromycin-resistant S. aureus isolates, the overall prevalence of inducible MLS(B) was 21.3% (16.2% of MRSA and 76.3% of methicillin-susceptible S. aureus). Among the 740 erythromycin-resistant CoNS isolates, the overall prevalence of inducible MLS(B) was 16.5% (16.0% of methicillin-resistant CoNS and 18.7% of methicillin-susceptible CoNS). The D-test was positive in 88.8% of S. aureus and 28.4% of CoNS isolates, which were erythromycin-resistant and clindamycin-susceptible.
CONCLUSIONS
There are some variations in the prevalence of inducible MLS(B) resistance in clinical staphylococcal isolates. It is important that clinical laboratories report inducible MLS(B) resistance for erythromycin-resistant and clindamycinsusceptible staphylococcal isolates.

Keyword

Staphylococcus; Clindamycin; Inducible; Resistance

MeSH Terms

Clindamycin
Erythromycin
Methicillin Resistance
Methicillin-Resistant Staphylococcus aureus
Prevalence
Staphylococcus
Staphylococcus aureus
Clindamycin
Erythromycin

Reference

1. Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH. Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol. 2003. 41:4740–4744.
Article
2. O'Sullivan MV, Cai Y, Kong F, Zeng X, Gilbert GL. Influence of disk separation distance on accuracy of the disk approximation test for detection of inducible clindamycin resistance in Staphylococcus spp. J Clin Microbiol. 2006. 44:4072–4076.
3. Steward CD, Raney PM, Morrell AK, Williams PP, McDougal LK, Jevitt L, McGowan JE Jr, Tenover FC. Testing for induction of clindamycin resistance in erythromycin-resistant isolates of Staphylococcus aureus. J Clin Microbiol. 2005. 43:1716–1721.
Article
4. Patel M, Waites KB, Moser SA, Cloud GA, Hoesley CJ. Prevalence of inducible clindamycin resistance among community - and hospital-associated Staphylococcus aureus isolates. J Clin Microbiol. 2006. 44:2481–2484.
Article
5. Cetin ES, Gunes H, Kaya S, Aridogan BC, Demirci M. Macrolide-lincosamide-streptogramin B resistance phenotypes in clinical staphylococcal isolates. Int J Antimicrob Agents. 2008. 31:364–368.
Article
6. Aktas Z, Aridogan A, Kayacan CB, Aydin D. Resistance to macrolide, lincosamide and streptogramin antibiotics in staphylococci isolated in Istanbul, Turkey. J Microbiol. 2007. 45:286–290.
7. Lewis JS 2nd, Jorgensen JH. Inducible clindamycin resistance in Staphylococci: should clinicians and microbiologists be concerned? Clin Infect Dis. 2005. 40:280–285.
Article
8. Jorgensen JH, Crawford SA, McElmeel ML, Fiebelkorn KR. Detection of inducible clindamycin resistance of staphylococci in conjunction with performance of automated broth susceptibility testing. J Clin Microbiol. 2004. 42:1800–1802.
Article
9. Siberry GK, Tekle T, Carroll K, Dick J. Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis. 2003. 37:1257–1260.
Article
10. Frank AL, Marcinak JF, Mangat PD, Tjhio JT, Kelkar S, Schreckenberger PC, Quinn JP. Clindamycin treatment of methicillin-resistant Staphylococcus aureus infections in children. Pediatr Infect Dis J. 2002. 21:530–534.
Article
11. Drinkovic D, Fuller ER, Shore KP, Holland DJ, Ellis-Pegler R. Clindamycin treatment of Staphylococcus aureus expressing inducible clindamycin resistance. J Antimicrob Chemother. 2001. 48:315–316.
Article
12. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; nineteenth informational supplement. CLSI document M100-S19. 2009. Wayne, PA: Clinical and Laboratory Standards Institute.
13. Lim JA, Kwon AR, Kim SK, Chong Y, Lee K, Choi EC. Prevalence of resistance to macrolide, lincosamide and streptogramin antibiotics in Gram-positive cocci isolated in a Korean hospital. J Antimicrob Chemother. 2002. 49:489–495.
Article
14. Uh Y, Hwang GY, Jang IH, Kwon O, Yoon KJ, Kim HY. Distributions of macrolide-lincosamide-streptogramin B resistance phenotypes in clinical isolates of staphylococci. Korean J Clin Microbiol. 2008. 11:78–83.
Article
15. Kim HB, Lee B, Jang HC, Kim SH, Kang CI, Choi YJ, Park SW, Kim BS, Kim EC, Oh MD, Choe KW. A high frequency of macrolide-lincosamide-streptogramin resistance determinants in Staphylococcus aureus isolated in South Korea. Microb Drug Resist. 2004. 10:248–254.
Article
16. Kim JS, Kim HS, Song W, Cho HC, Lee KM, Kim EC. Antimicrobial resistance profiles of Staphylococcus aureus isolated in 13 Korean hospitals. Korean J Lab Med. 2004. 24:223–229.
17. Bémer P, Juvin ME, Corvec S, Ros A, Drugeon H. Correlation of agar dilution and VITEK2 system for detection of resistance to macrolides, lincosamides and pristinamycin among Staphylococcus aureus and Staphylococcus epidermidis association with genotypes. Clin Microbiol Infect. 2005. 11:656–661.
Article
18. Chavez-Bueno S, Bozdogan B, Katz K, Bowlware KL, Cushion N, Cavuoti D, Ahmad N, McCracken GH Jr, Appelbaum PC. Inducible clindamycin resistance and molecular epidemiologic trends of pediatric community-acquired methicillin-resistant Staphylococcus aureus in Dallas, Texas. Antimicrob Agents Chemother. 2005. 49:2283–2288.
Article
19. Otsuka T, Zaraket H, Takano T, Saito K, Dohmae S, Higuchi W, Yamamoto T. Macrolide-lincosamide-streptogramin B resistance phenotypes and genotypes among Staphylococcus aureus clinical isolates in Japan. Clin Microbiol Infect. 2007. 13:325–327.
Article
20. Daurel C, Huet C, Dhalluin A, Bes M, Etienne J, Leclercq R. Differences in potential for selection of clindamycin-resistant mutants between inducible erm (A) and erm (C) Staphylococcus aureus genes. J Clin Microbiol. 2008. 46:546–550.
Article
21. Schreckenberger PC, Ilendo E, Ristow KL. Incidence of constitutive and inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci in a community and a tertiary care hospital. J Clin Microbiol. 2004. 42:2777–2779.
Article
22. Levin TP, Suh B, Axelrod P, Truant AL, Fekete T. Potential clindamycin resistance in clindamycin-susceptible, erythromycinresistant Staphylococcus aureus: report of a clinical failure. Antimicrob Agents Chemother. 2005. 49:1222–1224.
Article
Full Text Links
  • IC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr