1). Dougherty TJ. Photodynamic therapy. Photochem Photobiol. 1993; 58:895–900.
Article
2). Allison RR, Downie GH, Cuenca R, Hu X, Childs CJH, Sibata CH. Photosensitizers in clinical PDT. Photodiag Photodynamic. 2004; 1:27–42.
Article
3). Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci. 2002; 17:173–86.
Article
4). Daniela V, Asheesh G, Liyi H, Giacomo L, Pinar A, Andrea R, et al. Bacterial photodynamic inactivation mediated by methylene blue and red light is enhanced by synergistic effect of potassium iodide. Antimicrob Agents Chemother. 2015; 59:5203–12.
5). Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003; 3:380–7.
Article
6). Feese E, Ghiladi RA. Highly efficient in vitro photodynamic inactivation of Mycobacterium smegmatis. J Antimicrob Chemother. 2009; 64:782–785.
7). Gudgin DEF, Goyan RL, Pottier RH. New directions in photodynamic therapy. Cell Mol Bio. 2002; 48:939–54.
8). Janouskova O, Rakusan J, Karaskova M, Holada K. Photodynamic inactivation of prions by disulfonated hydroxyaluminium phthalocyanine. J Gen Virol. 2012; 93:2512–7.
Article
9). Song D, Lindoso JA, Oyafuso LK, Kanashiro EH, Cardoso JL, Uchoa AF, et al. Photodynamic therapy using methylene blue to treat cutaneous leishmaniasis. Photomed Laser Surg. 2011; 29:711–5.
Article
10). Sperandio FF, Huang Y, Hamblin MR. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat Antiinfect Drug Discov. 2013; 8:108–20.
Article
11). Usuda J, Kato H, Okunaka T, Furukawa K, Tsutsui H, Yamada K, et al. Photodynamic therapy (PDT) for lung cancers. J Thorac Oncol. 2006; 1:489–93.
Article
12). Wong TW, Huang HJ, Wang YF, Lee YP, Huang CC, Yu CK. Methylene blue mediated photodynamic inactivation as a novel disinfectant of enterovirus 71. J Antimicrob Chemother. 2010; 65:2176–82.
13). Kim DH, Kim HJ, Park SK, Kong SJ, Kim YS, Kim TH, et al. Treatment outcomes and survival based on drug resistance patterns in multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2011; 182:113–9.
Article
14). Kim HJ. Current status of tuberculosis in Korea. Korean J Med. 2012; 82:257–62.
Article
15). Park MM, Davis AL, Schluger NW, Cohen H, Rom WN. Outcome of MDR-TB patients, 1983–1993. Prolonged survival with appropriate therapy. Am J Respir Crit Care Med. 1996; 153:317–24.
Article
16). Devasia R, Blackman A, Eden S, Li H, Maruri F, Shintani A, et al. High proportion of fluoroquinoloneresistant Mycobacterium tuberculosis isolates with novel gyrase polymorphisms and a gyr A region associated with fluoroquinolone susceptibility. J Clin Microbiol. 2012; 50:1390–6.
17). Ji B, Lounis N, Maslo C, Truffot-Pernot C, Bonnafous P, Grosset J. In vitro and in vivo activities of moxifloxacin and clinafloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1998; 42:2066–9.
18). Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998; 393:537–44.
19). Groll AV, Martin A, Jureen P, Hoffner S, Vandamme P, Portaels F, et al. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyr A and gyr B. Antimicrob Agents Chemother. 2009; 53:4498–500.
20). Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyr A gene of Escherichia coli. Antimicrob Agents Chemother. 1990; 34:1271–2.
21). Ferrero L, Cameron B, Crouzet J. Analysis of gyr A and grl A mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1995; 39:1554–8.
22). Sturmey RG, Wild CP, Hardie LJ. Removal of red light minimizes methylene blue-stimulated DNA damage in oesophageal cells: implications for chromoendoscopy. Mutagenesis. 2009; 24:253–8.
Article
23). Davies J, Burke D, Olliver JR, Hardie LJ, Wild CP, Routledge MN. Methylene blue but not indigo carmine causes DNA damage to colonocytes in vitro and in vivo at concentrations used in clinical chromoendoscopy. Gut. 2007; 56:155–6.
24). Shih MH, Huang FC. Effects of photodynamic therapy on rapidly growing nontuberculous mycobacteria keratitis. Invest Ophthalmol Vis Sci. 2011; 52:223–9.
Article
25). Sirgel FA, Warren RM, Streicher EM, Victor TC, Helden PD, Bööttger EC. gyr A mutations and phenotypic susceptibility levels to ofloxacin and moxifloxacin in clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother. 2012; 67:1088–93.
26). Yokoyama K, Kim H, Mukai T, Matsuoka M, Nakajima C, Suzuki Y. Amino acid substitutions at position 95 in GyrA can add fluoroquinolone resistance to Mycobacterium leprae. Antimicrob Agents Chemother. 2012; 56:697–702.
27). Sung N, Back S, Jung J, Kim K, Kim J, Lee JH, et al. Inactivation of multidrug resistant (MDR)-and extensively drug resistant (XDR)-Mycobacterium tuberculosis by photodynamic therapy. Photodiagn Photodyn Ther. 2013; 10:694–702.