Cancer Res Treat.  2014 Jan;46(1):55-64.

Combination of TRAP1 and ERCC1 Expression Predicts Clinical Outcomes in Metastatic Colorectal Cancer Treated with Oxaliplatin/5-Fluorouracil

Affiliations
  • 1Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea. wkiki@naver.com
  • 2Department of Pathology, Kyung Hee University School of Medicine, Seoul, Korea.
  • 3Department of Surgery, Kyung Hee University School of Medicine, Seoul, Korea.

Abstract

PURPOSE
The novel heat shock protein tumor necrosis factor receptor-associated protein 1 (TRAP1) is associated with multidrug resistance in colorectal cancer (CRC) cells in vitro. Excision repair cross-complementation group 1 (ERCC1) expression levels in tumor tissues also predict clinical outcomes in metastatic CRC patients receiving combination oxaliplatin and 5-fluorouracil treatment. We investigated whether TRAP1 and ERCC1 protein expression by immunohistochemistry predict clinical outcomes in CRC patients.
MATERIALS AND METHODS
The study population consisted of 56 patients with metastatic CRC who received first-line oxaliplatin/5-fluorouracil therapy. Clinical response and overall survival (OS) by levels of the markers TRAP1 and ERCC1 were evaluated.
RESULTS
The rates of TRAP1 and ERCC1 expression were 21% and 52%, respectively. Patients negative for ERCC1 expression showed a tendency to respond to chemotherapy (p=0.066). Median OS was significantly longer in patients negative for TRAP1 than those positive for TRAP1 (p=0.023). Patients negative for ERCC1 expression also had a better OS than those positive for ERCC1 (p=0.021). The median OS was 30.9 months for patients negative for TRAP1 and ERCC1 compared to 13.2 months for those positive for TRAP1 and/or positive for ERCC1 expression (p=0.006). The combination of TRAP1 and ERCC1 expression was significantly associated with the response to chemotherapy (p=0.046) and independently predicted median OS in multivariate analysis (hazard ratio, 2.98; 95% confidence interval, 1.18 to 7.49).
CONCLUSION
The present study demonstrates that the combination of TRAP1 and ERCC1 expression predicts the survival of metastatic CRC patients who were treated with oxaliplatin/5-fluorouracil.

Keyword

Colorectal neoplasms; ERCC1; Fluorouracil; Oxaliplatin; TRAP1

MeSH Terms

Colorectal Neoplasms*
DNA Repair
Drug Resistance, Multiple
Drug Therapy
Fluorouracil
Heat-Shock Proteins
Humans
Immunohistochemistry
Multivariate Analysis
Tumor Necrosis Factor-alpha
Fluorouracil
Heat-Shock Proteins
Tumor Necrosis Factor-alpha

Figure

  • Fig. 1 Immunohistochemical staining of a tumor necrosis factor receptor-associated protein 1 (TRAP1) (A, D), excision repair cross-complementing 1 (ERCC1) (B, E), and thymidylate synthase (TS) (C, F) on paraffin sections of colorectal carcinoma specimens (A-F; ×400).

  • Fig. 2 Overall survival (OS) curve for 56 patients according to tumor necrosis factor receptor-associated protein 1 (TRAP1) (A), excision repair cross-complementing 1 (ERCC1) (B), and thymidylate synthase (TS) (C) expression.

  • Fig. 3 Overall survival (OS) curve for 56 patients according to tumor necrosis factor receptor-associated protein 1 (TRAP1)/excision repair cross-complementing 1 (ERCC1) score (score 0, negative TRAP1 and negative ERCC1; score 1, either positive TRAP1 or positive ERCC1; score 2, positive TRAP1 and positive ERCC1).


Reference

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011; 61:69–90. PMID: 21296855.
Article
2. Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO. The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem. 2000; 275:3305–3312. PMID: 10652318.
Article
3. Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell. 2007; 131:257–270. PMID: 17956728.
Article
4. Hua G, Zhang Q, Fan Z. Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J Biol Chem. 2007; 282:20553–20560. PMID: 17513296.
Article
5. Montesano Gesualdi N, Chirico G, Pirozzi G, Costantino E, Landriscina M, Esposito F. Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress. 2007; 10:342–350. PMID: 17853063.
Article
6. Costantino E, Maddalena F, Calise S, Piscazzi A, Tirino V, Fersini A, et al. TRAP1, a novel mitochondrial chaperone responsible for multi-drug resistance and protection from apoptotis in human colorectal carcinoma cells. Cancer Lett. 2009; 279:39–46. PMID: 19217207.
Article
7. Martin LP, Hamilton TC, Schilder RJ. Platinum resistance: the role of DNA repair pathways. Clin Cancer Res. 2008; 14:1291–1295. PMID: 18316546.
Article
8. Shirota Y, Stoehlmacher J, Brabender J, Xiong YP, Uetake H, Danenberg KD, et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol. 2001; 19:4298–4304. PMID: 11731512.
9. Kim MK, Cho KJ, Kwon GY, Park SI, Kim YH, Kim JH, et al. ERCC1 predicting chemoradiation resistance and poor outcome in oesophageal cancer. Eur J Cancer. 2008; 44:54–60. PMID: 17976974.
Article
10. Leav I, Plescia J, Goel HL, Li J, Jiang Z, Cohen RJ, et al. Cytoprotective mitochondrial chaperone TRAP-1 as a novel molecular target in localized and metastatic prostate cancer. Am J Pathol. 2010; 176:393–401. PMID: 19948822.
Article
11. Kang BH, Siegelin MD, Plescia J, Raskett CM, Garlick DS, Dohi T, et al. Preclinical characterization of mitochondria-targeted small molecule hsp90 inhibitors, gamitrinibs, in advanced prostate cancer. Clin Cancer Res. 2010; 16:4779–4788. PMID: 20876793.
Article
12. Kang BH, Plescia J, Song HY, Meli M, Colombo G, Beebe K, et al. Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest. 2009; 119:454–464. PMID: 19229106.
Article
13. Liu D, Hu J, Agorreta J, Cesario A, Zhang Y, Harris AL, et al. Tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates genes involved in cell cycle and metastases. Cancer Lett. 2010; 296:194–205. PMID: 20471161.
14. Arnould S, Hennebelle I, Canal P, Bugat R, Guichard S. Cellular determinants of oxaliplatin sensitivity in colon cancer cell lines. Eur J Cancer. 2003; 39:112–119. PMID: 12504667.
Article
15. Kim SH, Kwon HC, Oh SY, Lee DM, Lee S, Lee JH, et al. Prognostic value of ERCC1, thymidylate synthase, and glutathione S-transferase pi for 5-FU/oxaliplatin chemotherapy in advanced colorectal cancer. Am J Clin Oncol. 2009; 32:38–43. PMID: 19194123.
16. Koopman M, Venderbosch S, van Tinteren H, Ligtenberg MJ, Nagtegaal I, Van Krieken JH, et al. Predictive and prognostic markers for the outcome of chemotherapy in advanced colorectal cancer, a retrospective analysis of the phase III randomised CAIRO study. Eur J Cancer. 2009; 45:1999–2006. PMID: 19457654.
Article
17. Braun MS, Richman SD, Quirke P, Daly C, Adlard JW, Elliott F, et al. Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol. 2008; 26:2690–2698. PMID: 18509181.
Article
18. Yin M, Yan J, Martinez-Balibrea E, Graziano F, Lenz HJ, Kim HJ, et al. ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatin-based chemotherapies in gastric and colorectal cancer: a systemic review and meta-analysis. Clin Cancer Res. 2011; 17:1632–1640. PMID: 21278243.
Article
19. Vallbohmer D, Iqbal S, Yang DY, Rhodes KE, Zhang W, Gordon M, et al. Molecular determinants of irinotecan efficacy. Int J Cancer. 2006; 119:2435–2442. PMID: 16894565.
20. Holm B, Mellemgaard A, Skov T, Skov BG. Different impact of excision repair cross-complementation group 1 on survival in male and female patients with inoperable non-small-cell lung cancer treated with carboplatin and gemcitabine. J Clin Oncol. 2009; 27:4254–4259. PMID: 19667277.
Article
21. Zheng Z, Chen T, Li X, Haura E, Sharma A, Bepler G. DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med. 2007; 356:800–808. PMID: 17314339.
22. Lord RV, Brabender J, Gandara D, Alberola V, Camps C, Domine M, et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res. 2002; 8:2286–2291. PMID: 12114432.
23. Qiu LX, Tang QY, Bai JL, Qian XP, Li RT, Liu BR, et al. Predictive value of thymidylate synthase expression in advanced colorectal cancer patients receiving fluoropyrimidine-based chemotherapy: evidence from 24 studies. Int J Cancer. 2008; 123:2384–2389. PMID: 18729195.
Article
24. Popat S, Matakidou A, Houlston RS. Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J Clin Oncol. 2004; 22:529–536. PMID: 14752076.
Article
25. Kwon HC, Roh MS, Oh SY, Kim SH, Kim MC, Kim JS, et al. Prognostic value of expression of ERCC1, thymidylate synthase, and glutathione S-transferase P1 for 5-fluorouracil/oxaliplatin chemotherapy in advanced gastric cancer. Ann Oncol. 2007; 18:504–509. PMID: 17322540.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr