1. Task Force Team For Basic Statistical Study of Korean Diabetes Mellitus. Report of task force team for basic statistical study of Korean diabetes mellitus: diabetes in Korea 2007. 1st ed. Seoul: Goldfishery;2007. p. 1–57.
2. Lee SY, Park SL, Nam YD, Yi SH, Lim SI. Anti-diabetic effects of fermented green tea in KK-A y diabetic mice. Korean J Food Sci Technol. 2013; 45(4):488–494.
3. Jung JK, Park YK. Antidiabetic effect of So-Dang-Hwan in streptozotocin-induced diabetic rats. Korean J Herbol. 2009; 24(1):159–167.
4. Park KS, Ko SK, Chung SH. Comparisons of antidiabetic effect between Ginseng Radix alba, Ginseng Radix rubra and Panax Quinquefoli radix in MLD STZ-induced diabetic rats. J Ginseng Res. 2003; 27(2):56–61.
5. Salimifar M, Fatehi-Hassanabad Z, Fatehi M. A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Curr Diabetes Rev. 2013; 9(5):402–411.
Article
6. Zhu YP. Chinese materia medica: chemistry, pharmacology and applications. Boca Raton (FL): CRC Press;1998.
7. Chae JY, Lee JY, Hoang IS, Whangbo D, Choi PW, Lee WC, Kim JW, Kim SY, Choi SW, Rhee SJ. Analysis of functional components of leaves of different mulberry cultivars. J Korean Soc Food Sci Nutr. 2003; 32(1):15–21.
8. Lee WC, Kim AJ. The study on the functional materials and effects of mulberry leaf. Food Sci Ind. 2003; 36(3):2–14.
9. Kim JY, Chung HI, Jung KO, Wee JH, Kwon O. Chemical profiles and hypoglycemic activities of mulberry leaf extracts vary with ethanol concentration. Food Sci Biotechnol. 2013; 22(5):1443–1447.
Article
10. Park JM, Bong HY, Jeong HI, Kim YK, Kim JY, Kwon O. Postprandial hypoglycemic effect of mulberry leaf in Goto-Kakizaki rats and counterpart control Wistar rats. Nutr Res Pract. 2009; 3(4):272–278.
Article
11. Kim JY, Kwon HJ, Jung JY, Kwon HY, Baek JG, Kim YS, Kwon O. Comparison of absorption of 1-deoxynojirimycin from mulberry water extract in rats. J Agric Food Chem. 2010; 58(11):6666–6671.
Article
12. Kwon HJ, Chung JY, Kim JY, Kwon O. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: in vivo and in vitro studies. J Agric Food Chem. 2011; 59(7):3014–3019.
13. Kim JY, Choi BG, Jung MJ, Wee JH, Chung KH, Kwon O. Mulberry leaf water extract ameliorates insulin sensitivity in high fat or high sucrose diet induced overweight rats. J Korean Soc Appl Biol Chem. 2011; 54(4):612–618.
14. Chung HI, Kim J, Kim JY, Kwon O. Acute intake of mulberry leaf aqueous extract affects postprandial glucose response after maltose loading: Randomized double-blind placebo-controlled pilot study. J Funct Foods. 2013; 5(3):1502–1506.
Article
15. Kim JY, Mok O, Won P, Won K. Mulberry leaf extract improves postprandial glucose response in prediabetic subjects: a randomized, double-blind placebo-controlled trial. J Med Food. 2015; 18(3):306–313.
Article
16. Wei H, Morusalba L. 桑(Sang, White Mulberry). In : Liu Y, Wang Z, Zhang J, editors. Dietary Chinese Herbs: Chemistry, Pharmacology and Clinical Evidence. Wien: Springer;2015. p. 721–730.
17. Zhang Z, Shi L. Anti-inflammatory and analgesic properties of cismulberroside a from Ramulus mori. Fitoterapia. 2010; 81(3):214–218.
Article
18. Ham I, Jeong E, Lee B, Choi H. The study on anti-hypertensive and anti-diabetic effect of mori ramulus. Korean J Herbol. 2008; 23(2):203–212.
19. Lim CY, Lim SH, Cho SI. Anti-oxidative effects of Mori folium, Mori ramulus and Mori cortex radidus. Thesis Collect Res Inst Korean Med. 2014; 22(2):93–101.
20. Yoon SH, Jung SY, Ha H. Hypoglycemic and enzyme effects of the water extract of Mori radicis cortex in streptozotocin-induced diabetic rats. J Korean Soc Hyg Sci. 2001; 7(2):119–123.
21. Choi SW, Lee YJ, Ha SB, Jeon YH, Lee DH. Evaluation of biological activity and analysis of functional constituents from different parts of mulberry (Morus alba L.) tree. J Korean Soc Food Sci Nutr. 2015; 44(6):823–831.
Article
22. Choi SW, Jang YJ, Lee YJ, Leem HH, Kim EO. Analysis of functional constituents in mulberry (Morus alba L.) twigs by different cultivars, producing areas, and heat processings. Prev Nutr Food Sci. 2013; 18(4):256–262.
Article
23. Jang YJ, Leem HH, Jeon YH, Lee DH, Choi SW. Isolation and identification of α-glucosidase inhibitors from Morus root bark. J Korean Soc Food Sci Nutr. 2015; 44(7):1090–1099.
Article
24. Gerlier D, Thomasset N. Use of MTT colorimetric assay to measure cell activation. J Immunol Methods. 1986; 94(1-2):57–63.
Article
25. Asano N, Oseki K, Tomioka E, Kizu H, Matsui K. N-containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohydr Res. 1994; 259(2):243–255.
26. Park SY, Kim JS, Lee BH, Lim SC, Lee SN, Leem KH, Lee KM. Whitening effects of Mori ramulus, Mori cortex radicis and Mori folium herbal-acupuncture solution after fermentation and heating. J Korean Acupunct Moxibustion Soc. 2009; 26(1):91–98.
27. Kwon YI, Apostolidis E, Shetty K. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour Technol. 2008; 99(8):2981–2988.
Article
28. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005; 65(3):385–411.
29. Avignon A, Radauceanu A, Monnier L. Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care. 1997; 20(12):1822–1826.
Article
30. Lam SH, Chen JM, Kang CJ, Chen CH, Lee SS. α-Glucosidase inhibitors from the seeds of Syagrus romanzoffiana. Phytochemistry. 2008; 69(5):1173–1178.
Article
31. Kim SM, Lee YM, Kim MJ, Nam SY, Kim SH, Jang HH. Effects of Agrimonia pilosa Ledeb. water extract on α-glucosidase inhibition and glucose uptake in C2C12 skeletal muscle cells. Korean J Food Nutr. 2013; 26(4):806–813.
Article
32. Shim YJ, Doo HK, Ahn SY, Kim YS, Seong JK, Park IS, Min BH. Inhibitory effect of aqueous extract from the gall of Rhus chinensis on alpha-glucosidase activity and postprandial blood glucose. J Ethnopharmacol. 2003; 85(2-3):283–287.
Article
33. Hogan S, Zhang L, Li J, Sun S, Canning C, Zhou K. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase. Nutr Metab (Lond). 2010; 7(1):71.
Article
34. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989; 96(3):736–749.
Article
35. Murota K, Shimizu S, Miyamoto S, Izumi T, Obata A, Kikuchi M, Terao J. Unique uptake and transport of isoflavone aglycones by human intestinal caco-2 cells: comparison of isoflavonoids and flavonoids. J Nutr. 2002; 132(7):1956–1961.
Article
36. Oitate M, Nakaki R, Koyabu N, Takanaga H, Matsuo H, Ohtani H, Sawada Y. Transcellular transport of genistein, a soybean-derived isoflavone, across human colon carcinoma cell line (Caco-2). Biopharm Drug Dispos. 2001; 22(1):23–29.
Article
37. Vaidyanathan JB, Walle T. Transport and metabolism of the tea flavonoid (−)-epicatechin by the human intestinal cell line Caco-2. Pharm Res. 2001; 18(10):1420–1425.
38. Walle UK, Galijatovic A, Walle T. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem Pharmacol. 1999; 58(3):431–438.
Article
39. Kuo SM. Transepithelial transport and accumulation of flavone in human intestinal Caco-2 cells. Life Sci. 1998; 63(26):2323–2331.
Article
40. Kwon O, Eck P, Chen S, Corpe CP, Lee JH, Kruhlak M, Levine M. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 2007; 21(2):366–377.
Article
41. Jung JY, Lim Y, Moon MS, Kim JY, Kwon O. Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats. Nutr Metab (Lond). 2011; 8(1):18.
Article