1. Randolph GW. The importance of pre- and postoperative laryngeal examination for thyroid surgery. Thyroid. 2010; 20(5):453–8.
Article
2. Gardner GM, Smith MM, Yaremchuk KL, Peterson EL. The cost of vocal fold paralysis after thyroidectomy. Laryngoscope. 2013; 123(6):1455–63.
Article
3. Millesi H. Reappraisal of nerve repair. Surg Clin North Am. 1981; 61(2):321–40.
Article
4. Wang S, Cai Q, Hou J, Bei J, Zhang T, Yang J. et al. Acceleration effect of basic fibroblast growth factor on the regeneration of peripheral nerve through a 15-mm gap. J Biomed Mater Res A. 2003; 66(3):522–31.
5. Widmer MS, Gupta PK, Lu L, Meszlenyi RK, Evans GR, Brandt K. et al. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials. 1998; 19(21):1945–55.
6. Kiyotani T, Teramachi M, Takimoto Y, Nakamura T, Shimizu Y, Endo K. Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. 1996; 740(1-2):66–74.
Article
7. Pettersson J, McGrath A, Kalbermatten DF, Novikova LN, Wiberg M, Kingham PJ. et al. Muscle recovery after repair of short and long peripheral nerve gaps using fibrin conduits. Neurosci Lett. 2011; 500(1):41–6.
8. Keilhoff G, Stang F, Wolf G, Fansa H. Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction. Biomaterials. 2003; 24(16):2779–87.
Article
9. Choi JS, Oh SH, An HY, Kim YM, Lee JH, Lim JY. Functional regeneration of recurrent laryngeal nerve injury during thyroid surgery using an asymmetrically porous nerve guide conduit in an animal model. Thyroid. 2014; 24(1):52–9.
Article
10. Oh SH, Kim JR, Kwon GB, Namgung U, Song KS, Lee JH. Effect of surface pore structure of nerve guide conduit on peripheral nerve regeneration. Tissue Eng Part C Methods. 2013; 19(3):233–43.
Article
11. Kim H, Shim BS. Stretchable conducting materials with multi-scale hierarchical structures for biomedical applications. Proceedings of SPIE 9172, Aug 27, 2014; Nanostructured Thin Films VII, 91720D. 2014; 9172(91720D):
12. Lee WT, Milstein C, Hicks D, Akst LM, Esclamado RM. Results of ansa to recurrent laryngeal nerve reinnervation. Otolaryngol Head Neck Surg. 2007; 136(3):450–4.
Article
13. Mu LC, Yang SL. Electromyographic study on end-to-end anastomosis of the recurrent laryngeal nerve in dogs. Laryngoscope. 1990; 100(9):1009–17.
Article
14. Nahm I, Shin T, Watanabe H, Maeyama T. Misdirected regeneration of injured recurrent laryngeal nerve in the cat. Am J Otolaryngol. 1993; 14(1):43–8.
Article
15. Crumley RL. Laryngeal synkinesis: its significance to the laryngologist. Ann Otol Rhinol Laryngol. 1989; 98(2):87–92.
Article
16. Nahm I, Shin T, Chiba T. Regeneration of the recurrent laryngeal nerve in the guinea pig: reorganization of motoneurons after freezing injury. Am J Otolaryngol. 1990; 11(2):90–8.
Article
17. de Ruiter GC, Malessy MJ, Yaszemski MJ, Windebank AJ, Spinner RJ. Designing ideal conduits for peripheral nerve repair. Neurosurg Focus. 2009; 26(2):E5.
Article
18. Azzam NA, Zalewski AA, Williams LR, Azzam RN. Nerve cables formed in silicone chambers reconstitute a perineurial but not a vascular endoneurial permeability barrier. J Comp Neurol. 1991; 314(4):807–19.
Article
19. Lee SK, Kim H, Shim BS. Graphene: an emerging material for biological tissue engineering. Carbon letters. 2013; 14(2):63–75.
Article
20. Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, Parpura V. Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett. 2009; 9(1):264–8.
Article
21. Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH. et al. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater. 2011; 23(36):H263–7.
22. del Valle LJ, Aradilla D, Oliver R, Sepulcre F, Gamez A, Armelin E. et al. Cellular adhesion and proliferation on poly(3,4-ethylenedioxythiophene): Benefits in the electroactivity of the conducting polymer. Eur Polym J. 2007; 43(6):2342–9.
23. Schmidt CE, Shastri VR, Vacanti JP, Langer R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A. 1997; 94(17):8948–53.
Article
24. Hwang JY, Shin US, Jang WC, Hyun JK, Wall IB, Kim HW. Biofunctionalized carbon nanotubes in neural regeneration: a mini-review. Nanoscale. 2013; 5(2):487–97.
Article
25. Jakubiec B, Marois Y, Zhang Z, Roy R, Sigot-Luizard MF, Dugre FJ. et al. In vitro cellular response to polypyrrole-coated woven polyester fabrics: potential benefits of electrical conductivity. J Biomed Mater Res. 1998; 41(4):519–26.
26. Iizuka T. Experimental studies on the nerve interception and atrophy of the intrinsic muscles of the larynx. Nihon Jibiinkoka Gakkai Kaiho. 1966; 69(2):176–95.
27. Pan YA, Misgeld T, Lichtman JW, Sanes JR. Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J Neurosci. 2003; 23(36):11479–88.