J Vet Sci.  2015 Dec;16(4):483-489. 10.4142/jvs.2015.16.4.483.

Profiling of antimicrobial resistance and plasmid replicon types in beta-lactamase producing Escherichia coli isolated from Korean beef cattle

Affiliations
  • 1Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea. yoohs@snu.ac.kr
  • 2Institute of Green Bio Science and Technology, Seoul National University, Pyeungchang 25354, Korea.

Abstract

In this study, 78 isolates of Escherichia coli isolated from Korean beef cattle farms were investigated for the production of extended-spectrum beta-lactamase (ESBL) and/or AmpC beta-lactamase. In the disc diffusion test with ampicillin, amoxicillin, cephalothin, ceftiofur, cefotaxime, ceftazidime, and cefoxitin, 38.5% of the isolates showed resistance to all of ampicillin, amoxicillin, and cephalothin. The double disc synergy method revealed that none of the isolates produced ESBL or AmpC beta-lactamases. DNA sequencing showed that all isolates encoded genes for TEM-1-type beta-lactamase. Moreover, 78.2% of the isolates transferred the TEM-1-type beta-lactamase gene via conjugation. In plasmid replicon typing of all donors, IncFIB and IncFIA were identified in 71.4% and 41.0% of plasmids, respectively. In transconjugants, IncFIB and IncFIA were the most frequent types detected (61.5% and 41.0%, respectively). Overall, the present study indicates that selection pressures of antimicrobials on beta-lactamases in beef cattle may be low relative to other livestock animals in Korea. Moreover, to reduce selection pressure and dissemination of beta-lactamase, the long-term surveillance of antimicrobial use in domestic beef cattle should be established.

Keyword

beta-lactamase; antimicrobial resistance; Escherichia coli; plasmid replicon typing

MeSH Terms

Amoxicillin
Ampicillin
Animals
beta-Lactamases*
Cattle*
Cefotaxime
Cefoxitin
Ceftazidime
Cephalothin
Diffusion
Escherichia coli*
Escherichia*
Humans
Korea
Livestock
Plasmids*
Replicon*
Sequence Analysis, DNA
Tissue Donors
Amoxicillin
Ampicillin
Cefotaxime
Cefoxitin
Ceftazidime
Cephalothin
beta-Lactamases

Reference

1. Animal and Plant Quarantine Agency. 2013 Antimicrobial Use in Livestock and Monitoring of Antimicrobial Resistance in Animal and Carcass in Korea. Sejong: Ministry of Agriculture, Food and Rural Affairs;2014. p. 26–27.
2. Batchelor M, Hopkins K, Threlfall EJ, Clifton-Hadley FA, Stallwood AD, Davies RH, Liebana E. blaCTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob Agents Chemother. 2005; 49:1319–1322.
Article
3. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001; 14:933–951.
Article
4. Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 2009; 53:2227–2238.
Article
5. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. CLSI document M100-S23. Wayne: Clinical and Laboratory Standards Institute;2013.
6. Cooksey R, Swenson J, Clark N, Gay E, Thornsberry C. Patterns and mechanisms of β-lactam resistance among isolates of Escherichia coli from hospitals in the United States. Antimicrob Agents Chemother. 1990; 34:739–745.
Article
7. Couturier M, Bex F, Bergquist PL, Maas WK. Identification and classification of bacterial plasmids. Microbiol Rev. 1988; 52:375–395.
Article
8. Donaldson SC, Straley BA, Hegde NV, Sawant AA, DebRoy C, Jayarao BM. Molecular epidemiology of ceftiofurresistant Escherichia coli isolates from dairy calves. Appl Environ Microbiol. 2006; 72:3940–3948.
Article
9. Féria C, Ferreira E, Correia JD, Gonçalves J, Caniça M. Patterns and mechanisms of resistance to β-lactams and β-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal. J Antimicrob Chemother. 2002; 49:77–85.
10. Helfand MS, Bonomo RA. Current challenges in antimicrobial chemotherapy: the impact of extended-spectrum β-lactamases and metallo-β-lactamases on the treatment of resistant Gram-negative pathogens. Curr Opin Pharmacol. 2005; 5:452–458.
Article
11. Hu GZ, Chen HY, Si HB, Deng LX, Wei ZY, Yuan L, Kuang XH. Phenotypic and molecular characterization of TEM-116 extended-spectrum β-lactamase produced by a Shigella flexneri clinical isolate from chickens. FEMS Microbiol Lett. 2008; 279:162–166.
Article
12. Huang IF, Chiu CH, Wang MH, Wu CY, Hsieh KS, Chiou CC. Outbreak of dysentery associated with ceftriaxone-resistant Shigella sonnei: first report of plasmid-mediated CMY-2-type AmpC β-lactamase resistance in S. sonnei. J Clin Microbiol. 2005; 43:2608–2612.
Article
13. Jeong SH, Bae IK, Lee JH, Sohn SG, Kang GH, Jeon GJ, Kim YH, Jeong BC, Lee SH. Molecular characterization of extended-spectrum β-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol. 2004; 42:2902–2906.
Article
14. Jeong YS, Lee JC, Kang HY, Yu HS, Lee EY, Choi CH, Tae SH, Lee YC, Cho DT, Seol SY. Epidemiology of nalidixic acid resistance and TEM-1- and TEM-52-mediated ampicillin resistance of Shigella sonnei isolates obtained in Korea between 1980 and 2000. Antimicrob Agents Chemother. 2003; 47:3719–3723.
Article
15. Johnson TJ, Nolan LK. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev. 2009; 73:750–774.
Article
16. Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, Nolan LK. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol. 2007; 73:1976–1983.
Article
17. Lee J, Oh CE, Choi EH, Lee HJ. The impact of the increased use of piperacillin/tazobactam on the selection of antibiotic resistance among invasive Escherichia coli and Klebsiella pneumoniae isolates. Int J Infect Dis. 2013; 17:e638–e643.
18. Lim SK, Lee HS, Nam HM, Jung SC, Bae YC. CTX-M-type β-lactamase in Escherichia coli isolated from sick animals in Korea. Microb Drug Resist. 2009; 15:139–142.
Article
19. Livermore DM. Current epidemiology and growing resistance of gram-negative pathogens. Korean J Intern Med. 2012; 27:128–142.
Article
20. Orden JA, Ruiz-Santa-Quiteria JA, García S, Cid D, De La Fuente R. In vitro susceptibility of Escherichia coli strains isolated from diarrhoeic dairy calves to 15 antimicrobial agents. J Vet Med B Infect Dis Vet Public Health. 2000; 47:329–335.
Article
21. Pai H, Choi EH, Lee HJ, Hong JY, Jacoby GA. Identification of CTX-M-14 extended-spectrum β-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, and Klebsiella pneumoniae in Korea. J Clin Microbiol. 2001; 39:3747–3749.
Article
22. Pai H, Kang CI, Byeon JH, Lee KD, Park WB, Kim HB, Kim EC, Oh MD, Choe KW. Epidemiology and clinical features of bloodstream infections caused by AmpC-type-β-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004; 48:3720–3728.
Article
23. Pai H, Lyu S, Lee JH, Kim J, Kwon Y, Kim JW, Choe KW. Survey of extended-spectrum beta-lactamases in clinical isolates of Escherichia coli and Klebsiella pneumoniae: prevalence of TEM-52 in Korea. J Clin Microbiol. 1999; 37:1758–1763.
Article
24. Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, Bonomo RA. International Klebsiella Study Group. Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob Agents Chemother. 2003; 47:3554–3560.
Article
25. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002; 40:2153–2162.
Article
26. Petit A, Gerbaud G, Sirot D, Courvalin P, Sirot J. Molecular epidemiology of TEM-3 (CTX-1) β-lactamase. Antimicrob Agents Chemother. 1990; 34:219–224.
27. Rayamajhi N, Kang SG, Lee DY, Kang ML, Lee SI, Park KY, Lee HS, Yoo HS. Characterization of TEM-, SHV- and AmpC-type β-lactamases from cephalosporin-resistant Enterobacteriaceae isolated from swine. Int J Food Microbiol. 2008; 124:183–187.
Article
28. Sawant AA, Hegde NV, Straley BA, Donaldson SC, Love BC, Knabel SJ, Jayarao BM. Antimicrobial-resistant enteric bacteria from dairy cattle. Appl Environ Microbiol. 2007; 73:156–163.
Article
29. Shin SW, Byun JW, Jung M, Shin MK, Yoo HS. Antimicrobial resistance, virulence genes and PFGE-profiling of Escherichia coli isolates from South Korean cattle farms. J Microbiol. 2014; 52:785–793.
Article
30. Song W, Kim JS, Kim HS, Yong D, Jeong SH, Park MJ, Lee KM. Increasing trend in the prevalence of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal ampC gene at a Korean university hospital from 2002 to 2004. Diagn Microbiol Infect Dis. 2006; 55:219–224.
Article
31. Tamang MD, Nam HM, Gurung M, Jang GC, Kim SR, Jung SC, Park YH, Lim SK. Molecular characterization of CTX-M β-lactamase and associated addiction systems in Escherichia coli circulating among cattle, farm workers, and the farm environment. Appl Environ Microbiol. 2013; 79:3898–3905.
Article
32. Tamang MD, Nam HM, Jang GC, Kim SR, Chae MH, Jung SC, Byun JW, Park YH, Lim SK. Molecular characterization of extended-spectrum-β-lactamase-producing and plasmidmediated AmpC β-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob Agents Chemother. 2012; 56:2705–2712.
Article
33. Tan TY, Ng LS, He J, Koh TH, Hsu LY. Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother. 2009; 53:146–149.
Article
Full Text Links
  • JVS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr