1. Animal and Plant Quarantine Agency. 2013 Antimicrobial Use in Livestock and Monitoring of Antimicrobial Resistance in Animal and Carcass in Korea. Sejong: Ministry of Agriculture, Food and Rural Affairs;2014. p. 26–27.
2. Batchelor M, Hopkins K, Threlfall EJ, Clifton-Hadley FA, Stallwood AD, Davies RH, Liebana E.
blaCTX-M genes in clinical
Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob Agents Chemother. 2005; 49:1319–1322.
Article
3. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001; 14:933–951.
Article
4. Carattoli A. Resistance plasmid families in
Enterobacteriaceae. Antimicrob Agents Chemother. 2009; 53:2227–2238.
Article
5. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. CLSI document M100-S23. Wayne: Clinical and Laboratory Standards Institute;2013.
6. Cooksey R, Swenson J, Clark N, Gay E, Thornsberry C. Patterns and mechanisms of β-lactam resistance among isolates of
Escherichia coli from hospitals in the United States. Antimicrob Agents Chemother. 1990; 34:739–745.
Article
7. Couturier M, Bex F, Bergquist PL, Maas WK. Identification and classification of bacterial plasmids. Microbiol Rev. 1988; 52:375–395.
Article
8. Donaldson SC, Straley BA, Hegde NV, Sawant AA, DebRoy C, Jayarao BM. Molecular epidemiology of ceftiofurresistant
Escherichia coli isolates from dairy calves. Appl Environ Microbiol. 2006; 72:3940–3948.
Article
9. Féria C, Ferreira E, Correia JD, Gonçalves J, Caniça M. Patterns and mechanisms of resistance to β-lactams and β-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal. J Antimicrob Chemother. 2002; 49:77–85.
10. Helfand MS, Bonomo RA. Current challenges in antimicrobial chemotherapy: the impact of extended-spectrum β-lactamases and metallo-β-lactamases on the treatment of resistant Gram-negative pathogens. Curr Opin Pharmacol. 2005; 5:452–458.
Article
11. Hu GZ, Chen HY, Si HB, Deng LX, Wei ZY, Yuan L, Kuang XH. Phenotypic and molecular characterization of TEM-116 extended-spectrum β-lactamase produced by a
Shigella flexneri clinical isolate from chickens. FEMS Microbiol Lett. 2008; 279:162–166.
Article
12. Huang IF, Chiu CH, Wang MH, Wu CY, Hsieh KS, Chiou CC. Outbreak of dysentery associated with ceftriaxone-resistant
Shigella sonnei: first report of plasmid-mediated CMY-2-type AmpC β-lactamase resistance in
S. sonnei. J Clin Microbiol. 2005; 43:2608–2612.
Article
13. Jeong SH, Bae IK, Lee JH, Sohn SG, Kang GH, Jeon GJ, Kim YH, Jeong BC, Lee SH. Molecular characterization of extended-spectrum β-lactamases produced by clinical isolates of
Klebsiella pneumoniae and
Escherichia coli from a Korean nationwide survey. J Clin Microbiol. 2004; 42:2902–2906.
Article
14. Jeong YS, Lee JC, Kang HY, Yu HS, Lee EY, Choi CH, Tae SH, Lee YC, Cho DT, Seol SY. Epidemiology of nalidixic acid resistance and TEM-1- and TEM-52-mediated ampicillin resistance of
Shigella sonnei isolates obtained in Korea between 1980 and 2000. Antimicrob Agents Chemother. 2003; 47:3719–3723.
Article
15. Johnson TJ, Nolan LK. Pathogenomics of the virulence plasmids of
Escherichia coli. Microbiol Mol Biol Rev. 2009; 73:750–774.
Article
16. Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, Nolan LK. Plasmid replicon typing of commensal and pathogenic
Escherichia coli isolates. Appl Environ Microbiol. 2007; 73:1976–1983.
Article
17. Lee J, Oh CE, Choi EH, Lee HJ. The impact of the increased use of piperacillin/tazobactam on the selection of antibiotic resistance among invasive Escherichia coli and Klebsiella pneumoniae isolates. Int J Infect Dis. 2013; 17:e638–e643.
18. Lim SK, Lee HS, Nam HM, Jung SC, Bae YC. CTX-M-type β-lactamase in
Escherichia coli isolated from sick animals in Korea. Microb Drug Resist. 2009; 15:139–142.
Article
19. Livermore DM. Current epidemiology and growing resistance of gram-negative pathogens. Korean J Intern Med. 2012; 27:128–142.
Article
20. Orden JA, Ruiz-Santa-Quiteria JA, García S, Cid D, De La Fuente R.
In vitro susceptibility of
Escherichia coli strains isolated from diarrhoeic dairy calves to 15 antimicrobial agents. J Vet Med B Infect Dis Vet Public Health. 2000; 47:329–335.
Article
21. Pai H, Choi EH, Lee HJ, Hong JY, Jacoby GA. Identification of CTX-M-14 extended-spectrum β-lactamase in clinical isolates of
Shigella sonnei,
Escherichia coli, and
Klebsiella pneumoniae in Korea. J Clin Microbiol. 2001; 39:3747–3749.
Article
22. Pai H, Kang CI, Byeon JH, Lee KD, Park WB, Kim HB, Kim EC, Oh MD, Choe KW. Epidemiology and clinical features of bloodstream infections caused by AmpC-type-β-lactamase-producing
Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004; 48:3720–3728.
Article
23. Pai H, Lyu S, Lee JH, Kim J, Kwon Y, Kim JW, Choe KW. Survey of extended-spectrum beta-lactamases in clinical isolates of
Escherichia coli and
Klebsiella pneumoniae: prevalence of TEM-52 in Korea. J Clin Microbiol. 1999; 37:1758–1763.
Article
24. Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, Bonomo RA. International Klebsiella Study Group. Extended-spectrum β-lactamases in
Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob Agents Chemother. 2003; 47:3554–3560.
Article
25. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002; 40:2153–2162.
Article
26. Petit A, Gerbaud G, Sirot D, Courvalin P, Sirot J. Molecular epidemiology of TEM-3 (CTX-1) β-lactamase. Antimicrob Agents Chemother. 1990; 34:219–224.
27. Rayamajhi N, Kang SG, Lee DY, Kang ML, Lee SI, Park KY, Lee HS, Yoo HS. Characterization of TEM-, SHV- and AmpC-type β-lactamases from cephalosporin-resistant
Enterobacteriaceae isolated from swine. Int J Food Microbiol. 2008; 124:183–187.
Article
28. Sawant AA, Hegde NV, Straley BA, Donaldson SC, Love BC, Knabel SJ, Jayarao BM. Antimicrobial-resistant enteric bacteria from dairy cattle. Appl Environ Microbiol. 2007; 73:156–163.
Article
29. Shin SW, Byun JW, Jung M, Shin MK, Yoo HS. Antimicrobial resistance, virulence genes and PFGE-profiling of
Escherichia coli isolates from South Korean cattle farms. J Microbiol. 2014; 52:785–793.
Article
30. Song W, Kim JS, Kim HS, Yong D, Jeong SH, Park MJ, Lee KM. Increasing trend in the prevalence of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal
ampC gene at a Korean university hospital from 2002 to 2004. Diagn Microbiol Infect Dis. 2006; 55:219–224.
Article
31. Tamang MD, Nam HM, Gurung M, Jang GC, Kim SR, Jung SC, Park YH, Lim SK. Molecular characterization of CTX-M β-lactamase and associated addiction systems in
Escherichia coli circulating among cattle, farm workers, and the farm environment. Appl Environ Microbiol. 2013; 79:3898–3905.
Article
32. Tamang MD, Nam HM, Jang GC, Kim SR, Chae MH, Jung SC, Byun JW, Park YH, Lim SK. Molecular characterization of extended-spectrum-β-lactamase-producing and plasmidmediated AmpC β-lactamase-producing
Escherichia coli isolated from stray dogs in South Korea. Antimicrob Agents Chemother. 2012; 56:2705–2712.
Article
33. Tan TY, Ng LS, He J, Koh TH, Hsu LY. Evaluation of screening methods to detect plasmid-mediated AmpC in
Escherichia coli,
Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother. 2009; 53:146–149.
Article