1. Yong D, Shin HB, Kim YK, Cho J, Lee WG, Ha GY, et al. Increase in the prevalence of carbapenem-resistant
Acinetobacter isolates and ampicillin-resistant non-typhoidal
Salmonella species in Korea: a KONSAR study conducted in 2011. Infect Chemother. 2014; 46:84–93.
Article
2. Walsh TR. Clinically significant carbapenemases: an update. Curr Opin Infect Dis. 2008; 21:367–371.
Article
3. Poirel L, Nordmann P. Carbapenem resistance in
Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect. 2006; 12:826–836.
Article
4. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005; 18:306–325.
5. Yong D, Choi YS, Roh KH, Kim CK, Park YH, Yum JH, et al. Increasing prevalence and diversity of metallo-beta-lactamases in
Pseudomonas spp.,
Acinetobacter spp., and
Enterobacteriaceae from Korea. Antimicrob Agents Chemother. 2006; 50:1884–1886.
Article
6. Lim Y, Lee Y, Seo Y, Yum JH, Yong D, Lee K, et al. Loss of
blaVIM-2 and
blaIMP-1 during the storage of gram-negative bacilli, antimicrobial susceptibility of the gene-lost strain, and location of the gene in the cell. Ann Clin Microbiol. 2013; 16:120–125.
Article
7. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: twentieth informational supplement. M100-S20-U. Wayne, PA: CLSI;2010.
8. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of
Pseudomonas spp. and
Acinetobacter spp. J Clin Microbiol. 2003; 41:4623–4629.
Article
9. Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y, et al. VIM- and IMP-type metallo-beta-lactamase-producing
Pseudomonas spp. and
Acinetobacter spp. in Korean hospitals. Emerg Infect Dis. 2003; 9:868–871.
Article
10. Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, et al. Novel acquired metallo-beta-lactamase gene,
blaSIM-1, in a class 1 integron from A
cinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother. 2005; 49:4485–4491.
Article
11. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene,
blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in
Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009; 53:5046–5054.
Article
12. Smith Moland E, Hanson ND, Herrera VL, Black JA, Lockhart TJ, Hossain A, et al. Plasmid-mediated, carbapenem-hydrolysing beta-lactamase, KPC-2, in
Klebsiella pneumoniae isolates. J Antimicrob Chemother. 2003; 51:711–714.
Article
13. Rodríguez-Martínez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in
Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009; 53:4783–4788.
Article
14. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of
Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006; 50:1633–1641.
Article
15. Juan C, Zamorano L, Mena A, Albertí S, Pérez JL, Oliver A. Metallo-beta-lactamase-producing
Pseudomonas putida as a reservoir of multidrug resistance elements that can be transferred to successful
Pseudomonas aeruginosa clones. J Antimicrob Chemother. 2010; 65:474–478.
Article
16. Evans BA, Amyes SG. OXA β-lactamases. Clin Microbiol Rev. 2014; 27:241–263.
Article
17. Kouda S, Ohara M, Onodera M, Fujiue Y, Sasaki M, Kohara T, et al. Increased prevalence and clonal dissemination of multidrug-resistant
Pseudomonas aeruginosa with the
blaIMP-1 gene cassette in Hiroshima. J Antimicrob Chemother. 2009; 64:46–51.
Article
18. Lee JY, Ko KS. OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-β-lactamases in carbapenem-resistant
Pseudomonas aeruginosa isolates from South Korea. Int J Antimicrob Agents. 2012; 40:168–172.
Article
19. Cavalcanti FL, Almeida AC, Vilela MA, Morais MM, Morais Junior MA. Changing the epidemiology of carbapenem-resistant
Pseudomonas aeruginosa in a Brazilian teaching hospital: the replacement of São Paulo metallo-β-lactamase-producing isolates. Mem Inst Oswaldo Cruz. 2012; 107:420–423.
Article
20. Suh B, Bae IK, Kim J, Jeong SH, Yong D, Lee K. Outbreak of meropenem-resistant
Serratia marcescens comediated by chromosomal AmpC beta-lactamase overproduction and outer membrane protein loss. Antimicrob Agents Chemother. 2010; 54:5057–5061.
Article
21. Shin SY, Bae IK, Kim J, Jeong SH, Yong D, Kim JM, et al. Resistance to carbapenems in sequence type 11
Klebsiella pneumoniae is related to DHA-1 and loss of OmpK35 and/or OmpK36. J Med Microbiol. 2012; 61(Pt 2):239–245.
Article
22. Lee Y, Choi H, Yum JH, Kang G, Bae IK, Jeong SH, et al. Molecular mechanisms of carbapenem resistance in Enterobacter cloacae clinical isolates from Korea and clinical outcome. Ann Clin Lab Sci. 2012; 42:281–286.