Electrolyte Blood Press.  2008 Jun;6(1):35-41. 10.5049/EBP.2008.6.1.35.

Renal Effects of Prostaglandins and Cyclooxygenase-2 Inhibitors

Affiliations
  • 1Department of Internal Medicine and Institute of Biomedical Sciences, Hanyang University College of Medicine, Seoul, Korea. kimgh@hanyang.ac.kr

Abstract

Prostaglandins (PGs) with best-defined renal functions are PGE2 and prostacyclin (PGI2). These vasodilatory PGs increase renal blood flow and glomerular filtration rate under conditions associated with decreased actual or effective circulating volume, resulting in greater tubular flow and secretion of potassium. Under conditions of decreased renal perfusion, the production of renal PGs serves as an important compensatory mechanism. PGI2 (and possibly PGE2) increases potassium secretion mainly by stimulating secretion of renin and activating the renin-angiotensin system, which leads to increased secretion of aldosterone. In addition, PGE2 is involved in the regulation of sodium and water reabsorption and acts as a counterregulatory factor under conditions of increased sodium reabsorption. PGE2 decreases sodium reabsorption at the thick ascending limb of the loop of Henle probably via inhibition of the Na+-K+-2Cl-cotransporter type 2 (NKCC2). Cyclooxygenase inhibitors may enhance urinary concentrating ability in part through effects to upregulate NKCC2 in the thick ascending limb of Henle's loop and aquaporin-2 in the collecting duct. Thus, they may be useful to treat Bartter's syndrome and nephrogenic diabetes insipidus.


MeSH Terms

Aldosterone
Aquaporin 2
Bartter Syndrome
Cyclooxygenase 2
Cyclooxygenase 2 Inhibitors
Cyclooxygenase Inhibitors
Diabetes Insipidus, Nephrogenic
Dinoprostone
Epoprostenol
Extremities
Glomerular Filtration Rate
Kidney
Kidney Concentrating Ability
Loop of Henle
Perfusion
Potassium
Prostaglandins
Renal Circulation
Renin
Renin-Angiotensin System
Sodium
Water
Aldosterone
Aquaporin 2
Cyclooxygenase 2
Cyclooxygenase 2 Inhibitors
Cyclooxygenase Inhibitors
Dinoprostone
Epoprostenol
Potassium
Prostaglandins
Renin
Sodium
Water

Reference

1. Smith WL. Prostanoid biosynthesis and mechanisms of action. Am J Physiol. 1992; 263:F181–F191. PMID: 1324603.
Article
2. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971; 231:232–235. PMID: 5284360.
Article
3. Navar LG, Inscho EW, Majid SA, Imig JD, Harrison-Bernard LM, Mitchell KD. Paracrine regulation of the renal microcirculation. Physiol Rev. 1996; 76:425–536. PMID: 8618962.
Article
4. Schlondorff D, Ardaillou R. Prostaglandins and other arachidonic acid metabolites in the kidney. Kidney Int. 1986; 29:108–119. PMID: 3083150.
Article
5. Breyer MD, Jacobson HR, Breyer RM. Functional and molecular aspects of renal prostaglandin receptors. J Am Soc Nephrol. 1996; 7:8–17. PMID: 8808104.
Article
6. Breyer MD, Zhang Y, Guan YF, Hao CM, Hebert RL, Breyer RM. Regulation of renal function by prostaglandin E receptors. Kidney Int Suppl. 1998; 67:S88–S94. PMID: 9736261.
Article
7. Villa E, Garcia-Robles R, Haas J, Romero JC. Comparative effect of PGE2 and PGI2 on renal function. Hypertension. 1997; 30:664–666. PMID: 9323001.
8. Shankar SS, Brater DC. Loop diuretics: from the Na-K-2Cl transporter to clinical use. Am J Physiol Renal Physiol. 2003; 284:F11–F21. PMID: 12473535.
9. Fernandez-Llama P, Ecelbarger CA, Ware JA, Andrews P, Lee AJ, Turner R, et al. Cyclooxygenase inhibitors increase Na-K-2Cl cotransporter abundance in thick ascending limb of Henle's loop. Am J Physiol. 999; 277:F219–F226. PMID: 10444576.
10. Whelton A, Hamilton CW. Nonsteroidal anti-inflammatory drugs: effects on kidney function. J Clin Pharmacol. 1991; 31:588–598. PMID: 1894754.
Article
11. Carmichael J, Shankel SW. Effects of nonsteroidal anti-inflammatory drugs on prostaglandins and renal function. Am J Med. 1985; 78:992–1000. PMID: 2861741.
Article
12. Romero JC, Bentley MD, Vanhoutte PM, Knox FG. Intrarenal mechanisms that regulate sodium excretion in relationship to changes in blood pressure. Mayo Clin Proc. 1989; 64:1406–1424. PMID: 2512459.
Article
13. Arima S, Ren Y, Juncos LA, Carretero OA, Ito S. Glomerular prostaglandins modulate vascular reactivity of the downstream efferent arterioles. Kidney Int. 1994; 45:650–658. PMID: 8196266.
Article
14. Welch WJ, Wilcox CS. Modulating role for thromboxane in the tubuloglomerular feedback response in the rat. J Clin Invest. 1988; 81:1843–1849. PMID: 2968365.
Article
15. Brady HR, Papayianni A, Serhan CN. Leukocyte adhesion promotes biosynthesis of lipoxygenase products by transcellular routes. Kidney Int Suppl. 1994; 45:S90–S97. PMID: 8158907.
16. Harris RC, McKanna JA, Akai Y, Jacobson HR, Dubois RN, Breyer MD. Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest. 1994; 94:2504–2510. PMID: 7989609.
Article
17. Welch WJ, Wilcox CS, Dunbar KR. Modulation of renin by thromboxane: studies with thromboxane synthase inhibitor, receptor antagonists, and mimetic. Am J Physiol. 1989; 257:F554–F560. PMID: 2508488.
Article
18. Komhoff M, Grone HJ, Klein T, Seyberth HW, Nusing RM. Localization of cyclooxygenase-1 and -2 in adult and fetal human kidney: implication for renal function. Am J Physiol. 1997; 272:F460–F468. PMID: 9140046.
Article
19. Guan Y, Chang M, Cho W, Zhang Y, Redha R, Davis L, et al. Cloning, expression, and regulation of rabbit cyclooxygenase-2 in renal medullary interstitial cells. Am J Physiol. 1997; 273:F18–F26. PMID: 9249588.
Article
20. Khan KN, Stanfield KM, Harris RK, Baron DA. Expression of cyclooxygenase-2 in the macula densa of human kidney in hypertension, congestive heart failure, and diabetic nephropathy. Ren Fail. 2001; 23:321–330. PMID: 11499548.
Article
21. Adegboyega PA, Ololade O. Immunohistochemical expression of cyclooxygenase-2 in normal kidneys. Appl Immunohistochem Mol Morphol. 2004; 12:71–74. PMID: 15163023.
Article
22. Ferguson S, Hebert RL, Laneuville O. NS-398 upregulates constitutive cyclooxygenase-2 expression in the M-1 cortical collecting duct cell line. J Am Soc Nephrol. 1999; 10:2261–2271. PMID: 10541284.
Article
23. Luft FC, Wilcox CS, Unger T, Kuhn R, Demmert G, Rohmeiss P, et al. Angiotensin-induced hypertension in the rat. Sympathetic nerve activity and prostaglandins. Hypertension. 1989; 14:396–403. PMID: 2551821.
Article
24. Moeckel GW, Zhang L, Fogo AB, Hao CM, Pozzi A, Breyer MD. COX2 activity promotes organic osmolyte accumulation and adaptation of renal medullary interstitial cells to hypertonic stress. J Biol Chem. 2003; 278:19352–19357. PMID: 12637551.
Article
25. Kwon TH. Dysregulation of renal cyclooxygenase-2 in rats with lithium-induced nephrogenic diabetes insipidus. Electrolyte Blood Press. 2007; 5:68–74.
Article
26. Harris RC. The macula densa: recent developments. J Hypertens. 1996; 14:815–822. PMID: 8818919.
Article
27. Hartner A, Goppelt-Struebe M, Hilgers KF. Coordinate expression of cyclooxygenase-2 and renin in the rat kidney in renovascular hypertension. Hypertension. 1998; 31:201–205. PMID: 9453303.
Article
28. Cheng HF, Wang JL, Zhang MZ, Miyazaki Y, Ichikawa I, McKanna JA, et al. Angiotensin II attenuates renal cortical cyclooxygenase-2 expression. J Clin Invest. 1999; 103:953–961. PMID: 10194467.
Article
29. Yang T, Singh I, Pham H, Sun D, Smart A, Schnermann JB, et al. Regulation of cyclooxygenase expression in the kidney by dietary salt intake. Am J Physiol. 1998; 274:F481–F489. PMID: 9530264.
30. Zewde T, Mattson DL. Inhibition of cyclooxygenase-2 in the rat renal medulla leads to sodium-sensitive hypertension. Hypertension. 2004; 44:424–428. PMID: 15314032.
Article
31. Svendsen KB, Bech JN, Sorensen TB, Pedersen EB. A comparison of the effects of etodolac and ibuprofen on renal haemodynamics, tubular function, renin, vasopressin and urinary excretion of albumin and alpha-glutathione-S-transferase in healthy subjects: a placebo-controlled cross-over study. Eur J Clin Pharmacol. 2000; 56:383–388. PMID: 11009046.
32. Silverstein FE, Faich G, Goldstein JL, Simon LS, Pincus T, Whelton A, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA. 2000; 284:1247–1255. PMID: 10979111.
33. Catella-Lawson F, McAdam B, Morrison BW, Kapoor S, Kujubu D, Antes L, et al. Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids. J Pharmacol Exp Ther. 1999; 289:735–741. PMID: 10215647.
34. Schwartz JI, Vandormael K, Malice MP, Kalyani RN, Lasseter KC, Holmes GB, et al. Comparison of rofecoxib, celecoxib, and naproxen on renal function in elderly subjects receiving a normal-salt diet. Clin Pharmacol Ther. 2002; 72:50–61. PMID: 12152004.
Article
35. Whelton A. COX-2-specific inhibitors and the kidney: effect on hypertension and oedema. J Hypertens Suppl. 2002; 20:S31–S35. PMID: 12683425.
36. Johnson AG, Nguyen TV, Day RO. Do nonsteroidal anti-inflammatory drugs affect blood pressure? A metaanalysis. Ann Intern Med. 1994; 121:289–300. PMID: 8037411.
Article
37. Hocherl K, Endemann D, Kammerl MC, Grobecker HF, Kurtz A. Cyclo-oxygenase-2 inhibition increases blood pressure in rats. Br J Pharmacol. 2002; 136:1117–1126. PMID: 12163344.
38. Qi Z, Hao CM, Langenbach RI, Breyer RM, Redha R, Morrow JD, et al. Opposite effects of cyclooxygenase-1 and -2 activity on the pressor response to angiotensin II. J Clin Invest. 2002; 110:61–69. PMID: 12093889.
Article
39. Harris RC, Zhang MZ, Cheng HF. Cyclooxygenase-2 and the renal renin-angiotensin system. Acta Physiol Scand. 2004; 181:543–547. PMID: 15283769.
Article
40. Castrop H, Schweda F, Schumacher K, Wolf K, Kurtz A. Role of renocortical cyclooxygenase-2 for renal vascular resistance and macula densa control of renin secretion. J Am Soc Nephrol. 2001; 12:867–874. PMID: 11316844.
Article
41. Yang T, Park JM, Arend L, Huang Y, Topaloglu R, Pasumarthy A, et al. Low chloride stimulation of prostaglandin E2 release and cyclooxygenase-2 expression in a mouse macula densa cell line. J Biol Chem. 2000; 275:37922–37929. PMID: 10982805.
42. Kammerl MC, Nusing RM, Seyberth HW, Riegger GA, Kurtz A, Kramer BK. Inhibition of cyclooxygenase-2 attenuates urinary prostanoid excretion without affecting renal renin expression. Pflugers Arch. 2001; 442:842–847. PMID: 11680616.
Article
43. Reinalter SC, Jeck N, Brochhausen C, Watzer B, Nusing RM, Seyberth HW, et al. Role of cyclooxygenase-2 in hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int. 2002; 62:253–260. PMID: 12081585.
Article
44. Dunn MJ. Prostaglandin I2 and the kidney. Arch Mal Coeur Vaiss. 1989; 82 Spec No 4:27–31. PMID: 2514664.
45. Rossat J, Maillard M, Nussberger J, Brunner HR, Burnier M. Renal effects of selective cyclooxygenase-2 inhibition in normotensive salt-depleted subjects. Clin Pharmacol Ther. 1999; 66:76–84. PMID: 10430112.
Article
46. Perazella MA, Tray K. Selective cyclooxygenase-2 inhibitors: a pattern of nephrotoxicity similar to traditional nonsteroidal anti-inflammatory drugs. Am J Med. 2001; 111:64–67. PMID: 11448662.
Article
47. Vaisbich MH, Fujimura MD, Koch VH. Bartter syndrome: benefits and side effects of long-term treatment. Pediatr Nephrol. 2004; 19:858–863. PMID: 15206026.
Article
48. Allen HM, Jackson RL, Winchester MD, Deck LV, Allon M. Indomethacin in the treatment of lithium-induced nephrogenic diabetes insipidus. Arch Intern Med. 1989; 149:1123–1126. PMID: 2719505.
Article
49. Soylu A, Kasap B, Ogun N, Ozturk Y, Turkmen M, Hoefsloot L, et al. Efficacy of COX-2 inhibitors in a case of congenital nephrogenic diabetes insipidus. Pediatr Nephrol. 2005; 20:1814–1817. PMID: 16240160.
Article
50. Kim GH, Choi NW, Jung JY, Song JH, Lee CH, Kang CM, et al. Treating lithium-induced nephrogenic diabetes insipidus with a COX-2 inhibitor improves polyuria via upregulation of AQP2 and NKCC2. Am J Physiol Renal Physiol. 2008; 294:F702–F709. PMID: 18216147.
Article
Full Text Links
  • EBP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr