Int J Stem Cells.  2014 Nov;7(2):55-62. 10.15283/ijsc.2014.7.2.55.

The Molecular Nature of Very Small Embryonic-Like Stem Cells in Adult Tissues

Affiliations
  • 1Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea. d0shin03@amc.seoul.kr
  • 2Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea.
  • 3Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY, USA.

Abstract

Pluripotent stem cells (PSCs) have been considered as the most important cells in regenerative medicine as they are able to differentiate into all types of cells in the human body. PSCs have been established from several sources of embryo tissue or by reprogramming of terminally differentiated adult tissue by transduction of so-called Yamanaka factors (Oct4, Sox2, Klf4, and cMyc). Interestingly, accumulating evidence has demonstrated the residence of PSCs in adult tissue and with the ability to differentiate into multiple types of tissue-committed stem cells (TCSCs). We also recently demonstrated that a population of pluripotent Oct4(+) SSEA-1(+)Sca-1(+)Lin-CD45(-) very small embryonic-like stem cells (VSELs) resides in the adult murine bone marrow (BM) and in other murine tissue. These very small (~3-6 microm) cells express pluripotent markers such as Oct4, Nanog, and SSEA-1. VSELs could be specified into several tissue-residing TCSCs in response to tissue/organ injury, and thus suggesting that these cells have a physiological role in the rejuvenation of a pool of TCSCs under steady-state conditions. In this review article, we discuss the molecular nature of the rare population of VSELs which have a crucial role in regulating the pluripotency, proliferation, differentiation, and aging of these cells.

Keyword

VSEL; PGC; Genomic Imprinting; DNA Methylation; Pluripotency

MeSH Terms

Adult*
Aging
Antigens, CD15
Bone Marrow
DNA Methylation
Embryonic Structures
Genomic Imprinting
Human Body
Humans
Pluripotent Stem Cells
Regenerative Medicine
Rejuvenation
Stem Cells*
Antigens, CD15

Figure

  • Fig. 1. Epigenetic modification of VSELs during embryogenesis and tissue regeneration. Epigenetic modifications control the differentiation potential of stem cells during embryogenesis and tissue regeneration. During the implantation of embryo, ICM-derived epiblast stem cells methylated again i) X chromosome, ii) promoters for the genes characteristic for PSCs in ICM (Rex-1 and Stella), and iii) repetitive sequences. However, at the beginning of gastrulation the proximal, epiblast-specified PGCs can reset their epigenetic profile to one that characterizes ICM-derived PSCs. Subsequently, during PGCs migration to genital ridges, the global DNA demethylation leads to erase the genomic imprints. As it is hypothesized that VSELs originate from the epiblast-derived PGCs population, they show the PGCs-like epigenetic profiles, including the partial DNA demethylation in the regulatory DNA elements of several pluripotency, germ-line genes, and genomic imprints. The epigenetic profiles of developing VSELs are retained after their deposition into adult tissue. This parental-specific reprogramming of genomic imprinting of VSELs deposited in adult -tissue, e.g. BM, functions as i) a “lock-in mechanism” to prevent their unleashed proliferation and ii) a mechanism to restrict their sensitivity to Ins/Igf signaling. After exposure to tissue injury, quiescent VSELs de-repress “locked-in” genomic imprints along with progressive methylation of DNA in the Oct4 promoter. As a result of these epigenetic changes, VSELs become involved in the tissue regeneration process by differentiation into cells of all three germ layers, i.e. meso-, ecto-, and endoderm.


Reference

References

1. Ratajczak MZ, Machalinski B, Wojakowski W, Ratajczak J, Kucia M. A hypothesis for an embryonic origin of pluri-potent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia. 2007. 21:860–867.
Article
2. Ratajczak MZ, Liu R, Ratajczak J, Kucia M, Shin DM. The role of pluripotent embryonic-like stem cells residing in adult tissues in regeneration and longevity. Differentiation. 2011. 81:153–161.
Article
3. Niwa H. How is pluripotency determined and maintained? Development. 2007. 134:635–646.
Article
4. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981. 292:154–156.
Article
5. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998. 282:1145–1147.
Article
6. Hayashi K, Surani MA. Resetting the epigenome beyond pluripotency in the germline. Cell Stem Cell. 2009. 4:493–498.
Article
7. Surani MA, Hayashi K, Hajkova P. Genetic and epigenetic regulators of pluripotency. Cell. 2007. 128:747–762.
Article
8. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002. 418:41–49.
Article
9. Pochampally RR, Smith JR, Ylostalo J, Prockop DJ. Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood. 2004. 103:1647–1652.
Article
10. Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E, D’Aurizio F, Verardo R, Piazza S, Pignatelli A, Poz A, Baccarani U, Damiani D, Fanin R, Mariuzzi L, Finato N, Masolini P, Burelli S, Belluzzi O, Schneider C, Beltrami CA. Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood. 2007. 110:3438–3446.
Article
11. Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Müller HW, Zanjani E, Wernet P. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004. 200:123–135.
Article
12. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci. 2004. 117:2971–2981.
Article
13. Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, Shigemoto T, Nabeshima Y, Nakahata T, Nabeshima Y, Fujiyoshi Y, Dezawa M. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A. 2010. 107:8639–8643.
Article
14. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia. 2006. 20:857–869.
Article
15. Zuba-Surma EK, Kucia M, Rui L, Shin DM, Wojakowski W, Ratajczak J, Ratajczak MZ. Fetal liver very small embryonic/epiblast like stem cells follow developmental migratory pathway of hematopoietic stem cells. Ann N Y Acad Sci. 2009. 1176:205–218.
Article
16. Zuba-Surma EK, Kucia M, Wu W, Klich I, Lillard JW Jr, Ratajczak J, Ratajczak MZ. Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry A. 2008. 73A:1116–1127.
Article
17. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia. 2007. 21:297–303.
Article
18. Kucia M, Wysoczynski M, Ratajczak J, Ratajczak MZ. Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tissue Res. 2008. 331:125–134.
Article
19. Kucia MJ, Wysoczynski M, Wu W, Zuba-Surma EK, Ratajczak J, Ratajczak MZ. Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells. 2008. 26:2083–2092.
Article
20. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J, Hałasa M, Król M, Kazmierski M, Buszman P, Ochała A, Ratajczak J, Machaliński B, Ratajczak MZ. Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol. 2009. 53:1–9.
Article
21. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M, Karbicka A, Nowik M, Nowacki P, Ratajczak MZ, Machalinski B. Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke. 2009. 40:1237–1244.
Article
22. Drukała J, Paczkowska E, Kucia M, Młyńska E, Krajewski A, Machaliński B, Madeja Z, Ratajczak MZ. Stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients after skin burn injury. Stem Cell Rev. 2012. 8:184–194.
Article
23. Marlicz W, Zuba-Surma E, Kucia M, Blogowski W, Starzynska T, Ratajczak MZ. Various types of stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients with Crohn’s disease. Inflamm Bowel Dis. 2012. 18:1711–1722.
Article
24. Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, Wang J, Jin T, Zhang H, Dai J, Krebsbach PH, Keller ET, Pienta KJ, Taichman RS. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 2013. 4:1795.
Article
25. Kim J, Chu J, Shen X, Wang J, Orkin SH. An extended transcriptional network for pluripotency of embryonic stem cells. Cell. 2008. 132:1049–1061.
Article
26. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006. 126:663–676.
Article
27. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007. 448:318–324.
Article
28. Shin DM, Zuba-Surma EK, Wu W, Ratajczak J, Wysoczynski M, Ratajczak MZ, Kucia M. Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia. 2009. 23:2042–2051.
Article
29. Liedtke S, Enczmann J, Waclawczyk S, Wernet P, Kögler G. Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell. 2007. 1:364–366.
Article
30. Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, Scholer HR, Tomilin A, Jaenisch R. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell. 2007. 1:403–415.
Article
31. O’Neill LP, VerMilyea MD, Turner BM. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet. 2006. 38:835–841.
Article
32. Wylie C. Germ cells. Cell. 1999. 96:165–174.
Article
33. Hayashi K, de Sousa Lopes SM, Surani MA. Germ cell specification in mice. Science. 2007. 316:394–396.
Article
34. Shin DM, Liu R, Klich I, Wu W, Ratajczak J, Kucia M, Ratajczak MZ. Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia. 2010. 24:1450–1461.
Article
35. Shin DM, Liu R, Wu W, Waigel SJ, Zacharias W, Ratajczak MZ, Kucia M. Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state. Stem Cells Dev. 2012. 21:1639–1652.
Article
36. Kurimoto K, Yabuta Y, Ohinata Y, Saitou M. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc. 2007. 2:739–752.
Article
37. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006. 125:315–326.
Article
38. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006. 441:349–353.
Article
39. Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher AG, Pombo A. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol. 2007. 9:1428–1435.
Article
40. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001. 2:21–32.
Article
41. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev. 2004. 14:188–195.
Article
42. Kobayashi H, Suda C, Abe T, Kohara Y, Ikemura T, Sasaki H. Bisulfite sequencing and dinucleotide content analysis of 15 imprinted mouse differentially methylated regions (DMRs): paternally methylated DMRs contain less CpGs than maternally methylated DMRs. Cytogenet Genome Res. 2006. 113:130–137.
Article
43. Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y, Saga Y, Tachibana M, Shinkai Y, Saitou M. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development. 2007. 134:2627–2638.
Article
44. Yamazaki Y, Mann MR, Lee SS, Marh J, McCarrey JR, Yanagimachi R, Bartolomei MS. Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci U S A. 2003. 100:12207–12212.
Article
45. Russell SJ, Kahn CR. Endocrine regulation of ageing. Nat Rev Mol Cell Biol. 2007. 8:681–691.
Article
46. Ratajczak J, Shin DM, Wan W, Liu R, Masternak MM, Piotrowska K, Wiszniewska B, Kucia M, Bartke A, Ratajczak MZ. Higher number of stem cells in the bone marrow of circulating low Igf-1 level Laron dwarf mice--novel view on Igf-1, stem cells and aging. Leukemia. 2011. 25:729–733.
Article
47. Kucia M, Shin DM, Liu R, Ratajczak J, Bryndza E, Masternak MM, Bartke A, Ratajczak MZ. Reduced number of VSELs in the bone marrow of growth hormone transgenic mice indicates that chronically elevated Igf1 level accelerates age-dependent exhaustion of pluripotent stem cell pool: a novel view on aging. Leukemia. 2011. 25:1370–1374.
Article
48. Kucia M, Masternak M, Liu R, Shin DM, Ratajczak J, Mierzejewska K, Spong A, Kopchick JJ, Bartke A, Ratajczak MZ. The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs). Age (Dordr). 2013. 35:315–330.
Article
49. Mierzejewska K, Heo J, Kang JW, Kang H, Ratajczak J, Ratajczak MZ, Kucia M, Shin DM. Genome-wide analysis of murine bone marrow-derived very small embryonic-like stem cells reveals that mitogenic growth factor signaling pathways play a crucial role in the quiescence and ageing of these cells. Int J Mol Med. 2013. 32:281–290.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr