Obstet Gynecol Sci.  2013 Jan;56(1):2-7. 10.5468/OGS.2013.56.1.2.

Pathogenesis and promising non-invasive markers for preeclampsia

Affiliations
  • 1Department of Obstetrics and Gynecology, Ewha Womans University School of Medicine, Seoul, Korea. kkyj@ewha.ac.kr

Abstract

Preeclampsia is one of the leading causes of maternal mortality/morbidity and preterm delivery in the world, affecting 3% to 5% of pregnant women. The pathophysiology of preeclampsia likely involves both maternal and fetal/placental factors. Abnormalities in the development of placental vessels early in pregnancy may result in placental hypoperfusion, hypoxia, or ischemia. Hypoperfusion, hypoxia, and ischemia are critical components in the pathogenesis of preeclampsia because the hypoperfused placenta transfers many factors into maternal vessels that alter maternal endothelial cell function and lead to the systemic symptoms of preeclampsia. There are several hypotheses to explain the pathogenesis of preeclampsia, including altered angiogenic balance, circulating angiogenic factors (such as marinobufagenin, a bufadienolide trigger), and activation of the renin-angiotensin system. Epigenetically-modified cell-free nucleic acids that circulate in plasma and serum might be novel markers with promising non-invasive clinical applications in the diagnosis of preeclampsia.

Keyword

Preeclampsia; Pathogenesis; Angiogenic factors; Marinobufagenin; Cell-free nucleic acids

MeSH Terms

Angiogenesis Inducing Agents
Anoxia
Bufanolides
Endothelial Cells
Female
Humans
Ischemia
Nucleic Acids
Placenta
Plasma
Pre-Eclampsia
Pregnancy
Pregnant Women
Renin-Angiotensin System
Angiogenesis Inducing Agents
Bufanolides
Nucleic Acids

Figure

  • Fig. 1 Abnormal placentation in preeclampsia. In normal pregnancies, extravillous cytotrophoblasts of fetal origin invade the uterine spiral arteries of the decidua and myometrium. These invasive cytotrophoblasts replace the endothelial layer of the maternal spiral arteries, transforming them from small, high-resistance vessels into large-caliber vessels (A). However, in preeclampsia, this transformation is incomplete. Cytotrophoblast invasion of the spiral arteries is limited to the superficial decidua and does not reach the myometrium (B) (From Lam et al. [5], with permission from Wolters Kluwer Health).

  • Fig. 2 (A) Chemical structures of the bufadienolides and the cardenolides. The compounds on the left side are cardenolides and those on the right side are bufadienolides. (B) The chemical structures of marinobufagenin and resibufogenin (From Uddin et al. [17], with permission from Elsevier).

  • Fig. 3 Working model of the role of MBG in preeclampsia pathogenesis and its association with the RAS and oxidative stress (From Uddin et al. [17], with permission from Elsevier). MBG, marinobufagenin; RAS, renin-angiotensin system; RBG, Resibufogenin; sFlt1, soluble fms-like tyrosine kinase 1; sEng, endoglin; VEGF, vascular endothelial growth factor; BP, blood pressure; IUGR, intrauterine growth restriction.


Reference

1. Hauth JC, Ewell MG, Levine RJ, Esterlitz JR, Sibai B, Curet LB, et al. Pregnancy outcomes in healthy nulliparas who developed hypertension. Calcium for Preeclampsia Prevention Study Group. Obstet Gynecol. 2000; 95:24–28. PMID: 10636496.
2. World Health Organization (WHO). World health report: make every mother and child count [Internet]. Geneva: WHO;2005. cited 2012 Dec 20. Available from: http://whqlibdoc.who.int/whr/2005/9241562900.pdf.
3. Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010; 5:173–192. PMID: 20078220.
Article
4. Meekins JW, Pijnenborg R, Hanssens M, McFadyen IR, van Asshe A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol. 1994; 101:669–674. PMID: 7947500.
Article
5. Lam C, Lim KH, Karumanchi SA. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension. 2005; 46:1077–1085. PMID: 16230516.
Article
6. Cross JC, Werb Z, Fisher SJ. Implantation and the placenta: key pieces of the development puzzle. Science. 1994; 266:1508–1518. PMID: 7985020.
Article
7. Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest. 1997; 99:2152–2164. PMID: 9151787.
Article
8. Makris A, Thornton C, Thompson J, Thomson S, Martin R, Ogle R, et al. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int. 2007; 71:977–984. PMID: 17377512.
Article
9. Wang X, Athayde N, Trudinger B. A proinflammatory cytokine response is present in the fetal placental vasculature in placental insufficiency. Am J Obstet Gynecol. 2003; 189:1445–1451. PMID: 14634584.
Article
10. Redman CW, Sargent IL. Preeclampsia and the systemic inflammatory response. Semin Nephrol. 2004; 24:565–570. PMID: 15529291.
Article
11. Vitoratos N, Hassiakos D, Iavazzo C. Molecular mechanisms of preeclampsia. J Pregnancy. 2012; 2012:298343. PMID: 22523688.
Article
12. Zhou CC, Ahmad S, Mi T, Abbasi S, Xia L, Day MC, et al. Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension. 2008; 51:1010–1019. PMID: 18259044.
Article
13. Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006; 355:992–1005. PMID: 16957146.
Article
14. Cooke JP. NO and angiogenesis. Atheroscler Suppl. 2003; 4:53–60. PMID: 14664903.
Article
15. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993; 329:2002–2012. PMID: 7504210.
Article
16. Kim YJ, Kwon EJ, Lee SM, Lee JY, Lee KA, Park MH, et al. Elevated serum asymmetric dimethylarginine and expression of placental eNOS and VEGF in pregnancies with preeclampsia and SGA infants. Korean J Matern Fetal Med. 2011; 7:107–116.
17. Uddin MN, Allen SR, Jones RO, Zawieja DC, Kuehl TJ. Pathogenesis of pre-eclampsia: marinobufagenin and angiogenic imbalance as biomarkers of the syndrome. Transl Res. 2012; 160:99–113. PMID: 22683369.
Article
18. Schoner W. Endogenous cardiac glycosides, a new class of steroid hormones. Eur J Biochem. 2002; 269:2440–2448. PMID: 12027881.
Article
19. Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol. 2007; 293:C509–C536. PMID: 17494630.
Article
20. Bova S, Blaustein MP, Ludens JH, Harris DW, DuCharme DW, Hamlyn JM. Effects of an endogenous ouabainlike compound on heart and aorta. Hypertension. 1991; 17:944–950. PMID: 2045174.
Article
21. Vu HV, Ianosi-Irimie MR, Pridjian CA, Whitbred JM, Durst JM, Bagrov AY, et al. Involvement of marinobufagenin in a rat model of human preeclampsia. Am J Nephrol. 2005; 25:520–528. PMID: 16179779.
Article
22. Bagrov AY, Shapiro JI, Fedorova OV. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev. 2009; 61:9–38. PMID: 19325075.
Article
23. LaMarca HL, Morris CA, Pettit GR, Nagowa T, Puschett JB. Marinobufagenin impairs first trimester cytotrophoblast differentiation. Placenta. 2006; 27:984–988. PMID: 16458353.
Article
24. Zheng J, Bird IM, Chen DB, Magness RR. Angiotensin II regulation of ovine fetoplacental artery endothelial functions: interactions with nitric oxide. J Physiol. 2005; 565:59–69. PMID: 15790666.
Article
25. Hanssens M, Keirse MJ, Spitz B, van Assche FA. Angiotensin II levels in hypertensive and normotensive pregnancies. Br J Obstet Gynaecol. 1991; 98:155–161. PMID: 2004051.
Article
26. Uddin MN, Horvat D, Demorrow S, Agunanne E, Puschett JB. Marinobufagenin is an upstream modulator of Gadd45a stress signaling in preeclampsia. Biochim Biophys Acta. 2011; 1812:49–58. PMID: 20851181.
Article
27. Uddin MN, Agunanne EE, Horvat D, Puschett JB. Resibufogenin administration prevents oxidative stress in a rat model of human preeclampsia. Hypertens Pregnancy. 2012; 31:70–78. PMID: 21174582.
Article
28. Pozharny Y, Lambertini L, Clunie G, Ferrara L, Lee MJ. Epigenetics in women's health care. Mt Sinai J Med. 2010; 77:225–235. PMID: 20309920.
Article
29. Choudhury M, Friedman JE. Epigenetics and microRNAs in preeclampsia. Clin Exp Hypertens. 2012; 34:334–341. PMID: 22468840.
Article
30. Chelbi ST, Vaiman D. Genetic and epigenetic factors contribute to the onset of preeclampsia. Mol Cell Endocrinol. 2008; 282:120–129. PMID: 18177994.
Article
31. Chelbi ST, Mondon F, Jammes H, Buffat C, Mignot TM, Tost J, et al. Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension. 2007; 49:76–83. PMID: 17088445.
32. Pang ZJ, Xing FQ. Expression profile of trophoblast invasion-associated genes in the pre-eclamptic placenta. Br J Biomed Sci. 2003; 60:97–101. PMID: 12866918.
Article
33. Kulkarni A, Chavan-Gautam P, Mehendale S, Yadav H, Joshi S. Global DNA methylation patterns in placenta and its association with maternal hypertension in pre-eclampsia. DNA Cell Biol. 2011; 30:79–84. PMID: 21043832.
Article
34. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007; 61:24R–29R.
Article
35. Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 2007; 196:261.e1–261.e6. PMID: 17346547.
Article
Full Text Links
  • OGS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr