1. Shergill SS, Katona CL. Helmchen H, Henn F, Lauter H, Sartorius N, editors. Pharmacotherapy of affective disorders. Contemporary Psychiatry. 2001. 4th ed. Heidelberg: Springer;317–336.
Article
2. Rohlff C. Proteomics in molecular medicine: applications in central nervous systems disorders. Electrophoresis. 2000. 21:1227–1234.
Article
3. Morrison RS, Kinoshita Y, Johnson MD, Conrads TP. Proteomics in the postgenomic age. Adv Protein Chem. 2003. 65:1–23.
Article
4. Moseley FL, Bicknell KA, Marber MS, Brooks G. The use of proteomics to identify novel therapeutic targets for the treatment of disease. J Pharm Pharmacol. 2007. 59:609–628.
Article
5. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976. 72:248–254.
Article
6. Görg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004. 4:3665–3685.
Article
7. Hwa JS, Kim HJ, Goo BM, Park HJ, Kim CW, Chung KH, Park HC, Chang SH, Kim YW, Kim DR, Cho GJ, Choi WS, Kang KR. The expression of ketohexokinase is diminished in human clear cell type of renal cell carcinoma. Proteomics. 2006. 6:1077–1084.
Article
8. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001. 33:637–668.
Article
9. Rothermundt M, Falkai P, Ponath G, Abel S, Burkle H, Diedrich M, Hetzel G, Peters M, Siegmund A, Pedersen A, Maier W, Schramm J, Suslow T, Ohrmann P, Arolt V. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry. 2004. 9:897–899.
Article
10. Busnello JV, Leke R, Oses JP, Feier G, Bruch R, Quevedo J, Kapczinski F, Souza DO, Cruz Portela LV. Acute and chronic electroconvulsive shock in rats: effects on peripheral markers of neuronal injury and glial activity. Life Sci. 2006. 78:3013–3017.
Article
11. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell. 1997. 91:961–971.
12. Urschel S, Bassermann F, Bai RY, Munch S, Peschel C, Duyster J. Phosphorylation of Grb10 regulates its interaction with 14-3-3. J Biol Chem. 2005. 280:16987–16993.
Article
13. Bell R, Munro J, Russ C, Powell JF, Bruinvels A, Kerwin RW, Collier DA. Systematic screening of the 14-3-3 eta (n) chain gene for polymorphic variants and case-control analysis in schizophrenia. Am J Med Genet. 2000. 96:736–743.
14. Vawter MP, Barrett T, Cheadle C, Sokolov BP, Wood WH 3rd, Donovan DM, Webster M, Freed WJ, Becker KG. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull. 2001. 55:641–650.
Article
15. Wong AH, Macciardi F, Klempan T, Kawczynski W, Barr CL, Lakatoo S, Wong M, Buckle C, Trakalo J, Boffa E, Oak J, Azevedo MH, Dourado A, Coelho I, Macedo A, Vicente A, Valente J, Ferreira CP, Pato MT, Pato CN, Kennedy JL, Van Tol HH. Identification of candidate genes for psychosis in rat models, and possible association between schizophrenia and the 14-3-3eta gene. Mol Psychiatry. 2003. 8:156–166.
16. Middleton FA, Peng L, Lewis DA, Levitt P, Mirnics K. Altered expression of 14-3-3 genes in the prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology. 2005. 30:974–983.
Article
17. Thomas GM, Cunningham E, Fensome A, Ball A, Totty NF, Truong O, Hsuan JJ, Cockcroft S. An essential role for phosphatidylinositol transfer protein in phospholipase C-mediated inositol lipid signaling. Cell. 1993. 74:919–928.
Article
18. Kauffmann-Zeh A, Thomas GM, Ball A, Prosser S, Cunningham E, Cockcroft S, Hsuan JJ. Requirement for phosphatidylinositol transfer protein in epidermal growth factor signaling. Science. 1995. 268:1188–1190.
Article
19. Baraban JM. Toward a crystal-clear view of lithium's site of action. Proc Natl Acad Sci, USA. 1994. 91:5738–5739.
Article
20. Pollack SJ, Atack JR, Knowles MR, McAllister G, Ragan CI, Baker R, Fletcher SR, Iversen LL, Broughton HB. Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc Natl Acad Sci, USA. 1994. 91:5766–5770.
Article
21. Manji HK, Chen G, Hsiao JK, Risby ED, Masana MI, Potter WZ. Regulation of signal transduction pathways by mood-stabilizing agents: implications for the delayed onset of therapeutic efficacy. J Clin Psychiatry. 1996. 57:Suppl 13. 34–46.
22. Giardina T, Biagini A, Massey-Harroche D, Puigserver A. Distribution and subcellular localization of acylpeptide hydrolase and acylase I along the hog gastro-intestinal tract. Biochimie. 1999. 81:1049–1055.
Article
23. Lindner H, Hopfner S, Tafler-Naumann M, Miko M, Konrad L, Rohm KH. The distribution of aminoacylase I among mammalian species and localization of the enzyme in porcine kidney. Biochimie. 2000. 82:129–137.
Article
24. Cook RM, Franklin WA, Moore MD, Johnson BE, Miller YE. Mutational inactivation of aminoacylase-I in a small cell lung cancer cell line. Genes Chromosomes Cancer. 1998. 21:320–325.