1. World Health Organization. New technologies for tuberculosis control: a framework for their adoption, introduction and implementation. World Health Organization, 2007. Appia, Geneva, Switzerland: WHO Press.
2. Chang HE, Heo SR, Yoo KC, Song SH, Kim SH, Kim HB, et al. [Detection of Mycobacterium tuberculosis complex using real-time polymerase chain reaction]. Korean J Lab Med. 2008. 28:103–108.
Article
3. Kang SH, Yoo KC, Park KU, Song J, Kim EC. [Usefulness of multiplex real-Time PCR and melting curve analysis in identification of nontuberculous mycobacteria]. Korean J Lab Med. 2007. 27:40–45.
Article
4. Baba K, Pathak S, Sviland L, Langeland N, Hoosen AA, Asjo B, et al. Real-time quantitative PCR in the diagnosis of tuberculosis in formalin-fixed paraffin-embedded pleural tissue in patients from a high HIV endemic area. Diagn Mol Pathol. 2008. 17:112–117.
Article
5. Lee MF, Chen YH, Peng CF. Evaluation of reverse transcription loop-mediated isothermal amplification in conjunction with ELISA-hybridization assay for molecular detection of Mycobacterium tuberculosis. J Microbiol Methods. 2009. 76:174–180.
Article
6. Lee H, Park HJ, Cho SN, Bai GH, Kim SJ. Species identification of mycobacteria by PCR-restriction fragment length polymorphism of the rpoB gene. J Clin Microbiol. 2000. 38:2966–2971.
Article
7. Flores E, Rodríguez JC, Garcia-Pachón E, Soto JL, Ruiz M, Escribano I, et al. Real-time PCR with internal amplification control for detecting tuberculosis: method design and validation. APMIS. 2009. 117:592–597.
Article
8. Richardson ET, Samson D, Banaei N. Rapid Identification of
Mycobacterium tuberculosis and nontuberculous mycobacteria by multiplex, real-time PCR. J Clin Microbiol. 2009. 47:1497–1502.
Article
9. Mackay IM. Real-time PCR in the microbiology laboratory. Clin Microbiol Infect. 2004. 10:190–212.
Article
10. Tortoli E, Tronci M, Tosi CP, Galli C, Lavinia F, Natili S, et al. Multicenter evaluation of two commercial amplification kits (Amplicor, Roche and LCx, Abbott) for direct detection of
Mycobacterium tuberculosis in pulmonary and extrapulmonary specimens. Diagn Microbiol Infect Dis. 1999. 33:173–179.
Article
11. Yang HY, Lee HJ, Park SY, Lee KK, Suh JT. [Comparison of In-house Polymerase Chain Reaction Assay with Conventional Techniques for the Detection of Mycobacterium tuberculosis]. Korean J Lab Med. 2006. 26:174–178.
Article
12. Choi YM, Lee MH. Detection of Mycobacterium tuberculosis in sputum by using polymerase chain reaction. Korean J Clin Microbiol. 1999. 2:144–151.
13. Kim YJ, Park MY, Kim SY, Cho SA, Hwang SH, Kim HH, et al. [Evaluation of the performances of advanSure TB/NTM real time PCR Kit for detection of mycobacteria in respiratory specimens]. Korean J Lab Med. 2008. 28:34–38.
Article
14. Jung CL, Kim MK, Seo DC, Lee MA. Clinical usefulness of real-time PCR and amplicor MTB PCR assays for diagnosis of tuberculosis. Korean J Clin Microbiol. 2008. 11:29–33.
Article
15. Scarparo C, Piccoli P, Rigon A, Ruggiero G, Scagnelli M, Piersimoni C. Comparison of enhanced
Mycobacterium tuberculosis amplified direct test with COBAS AMPLICOR
Mycobacterium tuberculosis assay for direct detection of
Mycobacterium tuberculosis complex in respiratory and extrapulmonary specimens. J Clin Microbiol. 2000. 38:1559–1562.
Article
16. Goessens WH, de Man P, Koeleman JG, Luijendijk A, te Witt R, Endtz HP, et al. Comparison of the COBAS AMPLICOR MTB and BDProbeTec ET assays for detection of
Mycobacterium tuberculosis in respiratory specimens. J Clin Microbiol. 2005. 43:2563–2566.
Article