1. Amberg GC, Koh SD, Imaizumi Y, Ohya S, Sanders KM. A-type potassium currents in smooth muscle. Am J Physiol Cell Physiol. 2003. 284:C583–C595.
Article
2. Farrugia G. Ionic conductances in gastrointestinal smooth muscle and interstitial cells of Cajal. Annu Rev Physiol. 1999. 61:45–84.
3. Garcia ML, Galvez A, Garcia-Calvo M, King VF, Vazquez J, Kaczorowski GJ. Use of toxins to study potassium channels. J Bioenerg Biomembr. 1991. 23:615–646.
Article
4. Horowitz B, Ward SM, Sanders KM. Cellular and molecular basis for electrical rhythmicity in gastrointestinal tract. Annu Rev Physiol. 1999. 61:19–43.
5. Latorre R, Oberhauser A, Labarca P, Alvarez O. Varieties of calcium-activated potassium channels. Annu Rev Physiol. 1989. 51:385–399.
Article
6. Mitra R, Morad M. Ca2+ and Ca2+-activated K+ currents in mammalian gastric smooth muscle cells. Science. 1989. 229:269–272.
7. Sim JH, Yang DK, Kim YC, Park SJ, Kang TM, So I, Kim KW. ATP-sensitive K+ channels composed of Kir6.1 and SUR2B subunits in guinea pig gastric myocytes. Am J Physiol Gastrointest Liver Physiol. 2002. 282:G137–G144.
8. Blatz AL, Magleby KL. Calcium-activated potassium channels. Trends Neurosci. 1987. 10:463–467.
Article
9. Koh SD, Bradley KK, Rae MG, Keef KD, Horowitz B, Sanders KM. Basal activation of ATP-sensitive potassium channels in murine colonic smooth muscle cell. Biophys J. 1998. 75:1793–1800.
Article
10. Cho SY, Beckett EA, Baker SA, Han I, Park KJ, Monaghan K, Ward SM, Sanders KM, Koh SD. A pH-sensitive potassium conductance (TASK) and its function in the murine gastrointestinal tract. J Physiol. 2005. 565:243–259.
11. Kameyama M, Kakei M, Sato R, Shibasaki T, Matsuda H, Irisawa H. Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature. 1984. 309:354–356.
12. Egan TM, Dagan D, Kupper J, Levitan IB. Properties and rundown of sodium-activated potassium channels in rat olfactory bulb neurons. J Neurosci. 1992. 12:1964–1976.
Article
13. Dryer SE. Na+-activated K+ channels: a new family of large conductance ion channels. Trends Neurosci. 1994. 17:155–160.
14. Bertrand D, Bader CR, Berheim L, Haimann C. KNa, A sodium activated potassium current. Pflügers Arch. 1989. 414:S76–S79.
15. Dryer SE. Na+-activated K+ channels and voltage-evoked ionic currents in brain stem and parasympathetic neurons of the chick. J Physiol. 1989. 435:513–532.
16. Hainmann C, Bernheim L, Bertrand D, Bader CR. Potassium current activated by intracellular sodium in quail trigeminal ganglion neurons. J Gen Physiol. 1990. 95:961–979.
17. Malysz J, Richardson D, Farraway L, Christen M-O, Huizinga JD. Generation of slow wave type action potential in the mouse small intestine involves a non-L-type calcium channel. Can J Physiol Pharmacol. 1994. 73:1502–1511.
18. Tomita T, Hata T. Effects of removal of Na+ and Cl- on spontaneous electrical activity, slow wave, in the circular muscle of the guineapig gastric antrum. Jpn J Physiol. 2000. 50:469–477.
19. Benham CD, Bolton TB, Lang RJ. Acetylcholine activates an inward currents in single mammalian smooth muscle cells. Nature. 1985. 316:345–347.
20. Holm AJ, Rich A, Miller ST, Strege P, Ou Y, Gibbons SJ, Sarr MG, Szurszewski JH, Rae JL, Farrugia G. Sodium current in human jejunal circular smooth muscle cells. Gastroenterology. 2002. 122:178–187.
Article
21. Aickin CC. Investigation of factors affecting the intracellular sodium activity in the smooth muscle of guinea-pig ureter. J Physiol. 1987. 385:483–505.
Article
22. Lee CO, Fozzard H. Activities of potassium and sodium ions in rabbit heart muscle. J Gen Physiol. 1975. 65:695–708.
Article
23. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved pathch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981. 391:85–100.
24. Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ, Kaczmarek LK. Slick (Slo2.1), a rapid-gating sodium-activated potassium channel inhibited by ATP. J Neurosci. 2003. 23:11681–11691.
25. Dryer SE. Na+-activated K+ channels and voltage-dependent K+ current in spinal neurons of the frog embryo. J Physiol. 1991. 462:349–372.
26. Bhattacharjee A, Gan Li, Kaczmarek LK. Localization of the slack potassium channel in the rat central nervous system. J Comp Neurol. 2002. 454:241–254.
Article
27. Bhattacharjee A, Kaczmarek LK. For K+ channels, Na+ is the new Ca2+. Trends Neurosci. 2005. 28:422–428.
28. Wang Z, Kimitsu T, Noma T. Conductance properties of the Na+-activated K+ channel in guinea-pig ventricular cells. J Physiol. 1991. 433:241–257.
29. Leyssens A, Caemeliet E. Block of the transient inward current by R56865 in guinea-pig ventricular myocytes. Eur J Pharmacol. 1991. 196:43–51.
Article
30. Li Y, Sato T, Arita M. Bepridil blunts the shortening of action potential duration caused by metabolic inhibition via blockade of ATP-sensitive K+ channels and Na+-activated K+ channels. J Pharmacol Exp Ther. 1999. 291:562–568.
31. Pike MM, Kitakaze M, Marban E. 23Na-NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol. 1990. 259:H767–H773.
32. van Echteld CJ, Kirkels JH, Eijgelshoven MH, van der Meer P, Ruigrok TJC. Intracellular sodium during ischemia and calcium-free perfusion: a 23Na NMR study. J Mol Cell Cardiol. 1991. 23:297–307.
33. Glitch HG. Characteristics of active Na transport in intact cardia cells. Am J Physiol. 1979. 236:H189–H199.
34. Rose CR, Konnerth A. NMDA receptor-mediated Na+ signals in spines and dendrites. J Neurosci. 2001. 21:4207–4214.
35. Kim U, McCormick DA. Functional and ionic properties of a slow afterhyperpolarization in ferret perigeniculate neurons in vitro. J Neurophysiol. 1998. 80:1222–1235.
Article