Baruscotti M., DiFrancesco D., Robinson RB. Na+ current contribution to the diastolic depolarization in newborn rabbit SA node cells. Am J Physiol. 279:H2303–H2309. 2000.
Baumgarten CM., Clemo HF. Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol. 82:25–42. 2003.
Article
Bode F., Katchman A., Woosley RL., Franz MR. Gadolinium decreases stretch-induced vulnerability to atrial fibrillation. Circulation. 101:2200–2205. 2000.
Article
Bode F., Sachs F., Franz MR. Tarantula peptide inhibits atrial fibrillation. Nature. 409:35–36. 2001.
Article
Boland J., Troquet J. Intracellular action potential changes induced in both ventricles of the rat by an acute right ventricular pressure overload. Cardiovasc Res. 14:735–740. 1980.
Article
Boyle WA., Nerbonne JM. Two functionally distinct 4-aminopyridine-sensitive outward K+ currents in rat atrial myocytes. J Gen Physiol. 100:1041–1067. 1992.
Bustamante JO., Ruknudin A., Sachs F. Stretch-activated channels in heart cells: relevance to cardiac hypertrophy. J Cardiovasc Pharmacol. 17:S110–S113. 1991.
Craelius W. Stretch-activation of rat cardiac myocytes. Exp Physiol. 78:411–423. 1993.
Article
Dean JW., Lab MJ. Arrhythmia in heart failure: role of mechanically induced changes in electrophysiology. Lancet. 1:1309–1312. 1989.
Article
Ferrier GR. Digitalis arrhythmias: role of oscillatory afterpotentials. Prog Cardiovasc Dis. 19:459–474. 1977.
Article
Franz MR., Bode F. Mechano-electrical feedback underlying arrhythmias: the atrial fibrillation case. Prog Biophys Mol Biol. 82:163–174. 2003.
Article
Franz MR., Burkhoff D., Yue DT., Sagawa K. Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovasc Res. 23:213–223. 1989.
Article
Franz MR., Cima R., Wang D., Profitt D., Kurz R. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias [published erratum appears in Circulation 1992; 86:1663]. Circulation. 86:968–978. 1992.
Hansen DE. Mechanoelectrical feedback effects of altering preload, afterload, and ventricular shortening. Am J Physiol. 264:H423–H432. 1993.
Article
Hordof AJ., Spotnitz A., Mary-Rabine L., Edie RN., Rosen MR. The cellular electrophysiologic effects of digitalis on human atrial fibers. Circulation. 57:223–229. 1978.
Article
Hove-Madsen L., Llach A., Bayes-Genís A., Roura S., Rodriguez Font E., Arís A., Cinca J. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation. 110:1358–1363. 2004.
Article
Hoyer J., Distler A., Haase W., Gögelein H. Ca2+ influx through stretch-activated cation channels activates maxi K+ channels in porcine endocardial endothelium. Proc Natl Acad Sci USA. 91:2367–2371.
Hu H., Sachs F. Mechanically activated currents in chick heart cells. J Membr Biol. 154:205–216. 1996.
Article
Isenberg G., Kazanski V., Kondratev D., Gallitelli MF., Kiseleva I., Kamkin A. Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes. Prog Biophys Mol Biol. 82:43–56. 2003.
Kaufmann R., Theophile U. Automatiefördernde Dehnungseffekte an Purkinje-Fäden, Papillarmuskeln und Vorhoftrabekeln von Rhesus-Affen. Pflügers Arch. 297:174–189. 1967.
Article
Kiseleva I., Kamkin A., Wagner KD., Theres H., Ladhoff A., Scholz H., Günther J., Lab MJ. Mechanoelectric feedback after left ventricular infarction in rats. Cardiovasc Res. 45:370–378. 2000.
Article
Lab MJ. Mechanically dependent changes in action potentials recorded from the intact frog ventricle. Circ Res. 42:519–528. 1978.
Article
Lei M., Jones SA., Liu J., Lancaster MK., Fung SS., Dobrzynski H., Camelliti P., Maier SK., Noble D., Boyett MR. Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. J Physiol. 559:835–848. 2004.
Article
Maier SK., Westenbroek RE., Yamanushi TT., Dobrzynski H., Boyett MR., Catterall WA., Scheuer T. An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci USA. 100:3507–3512. 2003.
Article
Maltsev VA., Lakatta EG. Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovasc Res. 77:274–284. 2008.
Mary-Rabine L., Albert A., Pham TD., Hordof A., Fenoglio JJ Jr., Malm JR., Rosen MR. The relationship of human atrial cellular electrophysiology to clinical function and ultrastructure. Circ Res. 52:188–199. 1983.
Article
Matsuoka S., Sarai N., Kuratomi S., Ono K., Noma A. Role of individual ionic current systems in ventricular cells hypothesized by a model study. Jpn J Physiol. 53:105–123. 2003.
Article
Niu W., Sachs F. Dynamic properties of stretch-activated K+ channels in adult rat atrial myocytes. Prog Biophys Mol Biol. 82:121–135. 2003.
Noble D. Simulation of Na/Ca exchange activity during ischemia. Ann N Y Acad Sci. 976:431–437. 2002.
Article
Noble D., Noble PJ. Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart. 92:iv1–iv5. 2006.
Article
Nuss HB., Balser JR., Orias DW., Lawrence JH., Tomaselli GF., Marban E. Coupling between fast and slow inactivation revealed by analysis of a point mutation (F1304Q) in μl rat skeletal muscle sodium channels. J Physiol. 494:411–429. 1996.
Prakash P., Meera P., Tripathi O. Effects of calcium channel blockers on spontaneous electrical activity of freshly isolated three-day-old embryonic chick ventricle. Reprod Fertil Dev. 8:921–929. 1996.
Article
Psaty BM., Manolio TA., Kuller LH., Kronmal RA., Cushman M., Fried LP., White R., Furberg CD., Rautaharju PM. Incidence of and risk factors for atrial fibrillation in older adults. Circulation. 96:2455–2461. 1997.
Article
Rota M., Vassalle M. Patch-clamp analysis in canine cardiac Purkinje cells of a novel sodium component in the pacemaker range. J Physiol. 548:147–165. 2003.
Article
Sadoshima J., Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 12:1681–1692. 1993.
Article
Sanders L., Rakovic S., Lowe M., Mattick PA., Terrar DA. Fundamental importance of Na+-Ca2+ exchange for the pacemaking mechanism in guinea-pig sino-atrial node. J Physiol. 571:639–649. 2006.
Sarai N., Matsuoka S., Kuratomi S., Ono K., Noma A. Role of individual ionic current systems in the SA node hypothesized by a model study. Jpn J Physiol. 53:125–134. 2003.
Article
Satoh H., Mukai M., Urushida T., Katoh H., Terada H., Hayashi H. Importance of Ca2+ influx by Na+/Ca2+ exchange under normal and sodium-loaded conditions in mammalian ventricles. Mol Cell Biochem. 242:11–17. 2003.
Sorota S. Swelling-induced chloride-sensitive current in canine atrial cells revealed by whole-cell patch-clamp method. Circ Res. 70:679–687. 1992.
Article
Taggart P. Mechano-electric feedback in the human heart. Cardiovasc Res. 32:38–43. 1996.
Article
Terrenoire C., Lauritzen I., Lesage F., Romey G., Lazdunski M. A TREK-1-like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics. Circ Res. 89:336–342. 2001.
Tseng GN. Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. Am J Physiol. 262:C1056–C1068. 1992.
Article
Vandenburgh HH. Mechanical forces and their second messengers in stimulating cell growth in vitro. Am J Physiol. 262:R350–R355. 1992.
Article
Vassalle M., Scidá EE. The role of sodium in spontaneous discharge in the absence and in the presence of strophanthidin. Fed Proc. 38:880. 1979.
Vaziri SM., Larson MG., Benjamin EJ., Levy D. Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation. 89:724–730. 1994.
Article
Vinogradova TM., Maltsev VA., Bogdanov KY., Lyashkov AE., Lakatta EG. Rhythmic Ca2+ oscillations drive sinoatrial nodal cell pacemaker function to make the heart tick. Ann N Y Acad Sci. 1047:138–156. 2005.
Wagner MB., Kumar R., Joyner RW., Wang Y. Induced automaticity in isolated rat atrial cells by incorporation of a stretch-activated conductance. Pflügers Arch. 447:819–829. 2004.
Article
Youm JB. Stretch-activated K+ channels in rat atrial myocytes. Korean J Physiol Pharmacol. 7:341–348. 2003.
Youm JB., Han J., Kim N., Zhang YH., Kim E., Joo H., Leem CH., Kim SJ., Cha KA., Earm YE. Role of stretch-activated channels on the stretch-induced changes of rat atrial myocytes. Prog Biophys Mol Biol. 90:186–206. 2006.
Article
Zhang YH., Youm JB., Sung HK., Lee SH., Ryu SY., Ho WK., Earm YE. Stretch-activated and background non-selective cation channels in rat atrial myocytes. J Physiol. 523:607–619. 2000.
Article