1. Buchi ER. Cell death in the rat retina after a pressure-induced ischaemia-reperfusion insult: an electron microscopic study. I. Ganglion cell layer and inner nuclear layer. Exp Eye Res. 1992; 55:605–13.
2. Matini P, Moroni F, Lombardi G. . Ultrastructural and Biochemical studies on the neuroprotective effects of excitatory amino acid antagonists in the ischemic rat retina. Exp Neurol. 1997; 146:419–34.
Article
3. Wyllie AH. Apoptosis: Cell death in tissue regulation. J Pathol. 1987; 153:313–6.
Article
4. Nakanishi S, Nakajima Y, Masu M. . Glutamate receptors: brain function and signal transduction. Brain Res Brain Res Rev. 1998; 26:230–5.
5. Thoreson WB, Witkovsky P. Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res. 1999; 18:765–810.
Article
6. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988; 1:623–34.
Article
7. Kageyama T, Ishikawa A, Tamai M. Glutamate elevation in rabbit vitreous during transient ischemia-reperfusion. Jpn J Ophthalmol. 2000; 44:110–4.
Article
8. Dreyer EB, Zurakowski D, Schumer RA. . Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol. 1996; 114:299–305.
Article
9. Lam TT, Abler AS, Kwong JM, Tso MO. N-methyl-D- aspartate (NMDA) induced apoptosis in rat retina. Invest Opthalmol Vis Sci. 1999; 40:2319–7.
10. Kwong JM, Lam TT. N-methyl-D-aspartate (NMDA) induced apoptosis in adult rabbit retinas. Exp Eye Res. 2000; 71:437–44.
11. Moroni F, Lombardi G, Pellegrini-Faussone S, Moroni F. Photochemically induced lesion of the rat retina: a quantitative model for the evaluation of ischemia induced retinal damage. Vison Res. 1993; 33:1887–91.
12. Kasischke K, Ludolph AC, Riepe MW. NMDA-antagonists increased hypoxic tolerance by preceding chemical hypoxia. Neurosci Lett. 1996; 214:175–8.
13. Newell DW, Barth A, Papermaster V, Malouf AT. Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures. J Neurosci. 1995; 15:7702–11.
Article
14. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M. Glutamate-induced over expression of NMDA receptor messenger RNAs and protein triggered by activation of AMPA/kainate receptors in rat hippocampus following forebrain ischemia. Brain Res. 1994; 659:67–74.
15. Louzada-Junior P, Dias JJ, Santos WF. . Glutamate release in experimental ischemia of the retina an approach using microdialysis. J Neurochem. 1992; 59:358–63.
16. Neal MJ, Cunningham JR, Hutson PH, Hogg J. Effects of ischemia on neurotransmitter release from the isolated retina. J Neurochem. 1994; 62:1025–33.
17. Wahl F, Obrenovitch TP, Hardy AM. . Extracellular glutamate during focal cerebral ischemia in rats: time course and calcium dependency. J Neurochem. 1994; 63:1003–11.
18. Tsubokawa H, Oguro K, Masuzawa T, Kawai N. Ca2+-dependent non-NMDA receptor-mediated synaptic currents in ischemic CA1 hippocampal neurons. J Neurophysiol. 1994; 71:1190–6.
19. Ferreira IL, Duarte CB, Carvalho AP. Ca2+ influx through glutamate receptor-associated channels in retina cells correlates with neuronal cell death. Eur J Pharmacol. 1996; 302:153–62.
20. Dugan LL, Sensi SL, Canzoniero LM. . Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci. 1995; 15:6377–88.
Article
21. Prigle AK, Iannotti F, Wilde GJ. . Neuroprotection by both NMDA and non-NMDA receptor antagonists in vitro ischemia. Brain Res. 1997; 755:36–46.
22. Lee SJ, Jung CS, Bai SH. The effects of N-methyl-D-aspartic acid and antagonism by Kyurenic acid on neurons in the catfish retina. J Korean Ophthalmol Soc. 1998; 39:2303–12.
23. Rosl F. A simple and rapid method for detection of apoptosis in human cells. Nucl Acids Res. 1992; 20:5243.
24. Gavrieli Y, Sherman Y, Ben-Sasson . Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992; 119:493–501.
Article
25. Kelekar A, Thompson CB. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 1998; 8:324–30.
Article
26. Yang E, Zha J, Jockel J. . Bad, a heterodimeric partner for Bcl-X L and Bcl-2, displaces Bax and promotes cell death. Cell. 1995; 80:285–91.
27. O'Connor L, Strasser A, O'Reilly LA. . Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 1998; 17:384–95.
28. Boise LH, Gonzalez-Garcia M, Postema CE. . BCL-X, a BCL-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993; 74:597–608.
Article
29. Lithgow T, van Driel R, Bertram JF, Strasser A. The protein product of the oncogene Bcl-2 is a component of the nuclear envelope, the endoplasmic reticulum, and the outer mitochondrial membrane. Cell Growth Differ. 1994; 5:411–7.
30. Hockenbery DM, Oltvai ZN, Yin XM. . Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993; 75:241–51.
Article
31. Kane DJ, Sarafian TA, Anton R. . Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science. 1993; 262:1274–7.
Article
32. Mazel S, Burtrum D, Petrie HT. Regulation of cell division cycle progression by Bcl-2 expression: a potential mechanism for inhibition of programmed cell death. J Exp Med. 1996; 183:2219–26.
Article
33. Harris MH, Thompson CB. The role of Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ. 2000; 7:1182–91.
34. Oltvai Z, Milliman C, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993; 74:609–19.
35. Bonfanti L, Strettoi E, Chierzi S. . Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing Bcl-2. J Neurosci. 1996; 16:4186–94.
Article
36. Porciatti V, Pizzorusso T, Cenni MC, Maffei L. The visual response of retinal ganglion cells is not altered by optic nerve transection in transgenic mice overexpressing Bcl-2. Proc Natl Acad Aci U S A. 1996; 93:14955–9.
Article
37. Khaled AR, Kim K, Hofmeister R. . Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc Natl Acad Sci U.S.A. 1999; 96:14476–81.
Article
38. Ogden TE. Ryan SJ, editor. Glia of the retina. Retina. 1994. 2nd ed. St. Louis: The C.V. Mosby Company;v. 1:p. chap. 5.
39. Ehinger B. Glial and neuronal uptake of GABA, glutamic acid, glutamine and glutathione in the rabbit retina. Exp Eye Res. 1977; 25:221–34.
Article
40. Szatkowski M, Barbour B, Attwell D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature. 1990; 348:443–6.
Article
41. Pow DV, Robinson SR. Glutamate in some retinal neurons is derived solely from glia. Neuroscience. 1994; 60:355–66.
Article
42. Chen ST, Gentleman SM, Garey LJ, Jen LS. Distribution of beta-amyloid precursor and B-cell lymphoma protooncogene proteins in the rat retina after optic nerve transection or vascular lesion. J Neuropathol Exp Neurol. 1996; 55:1073–82.
43. Park KH, Kim DM. Apoptosis of retinal ganglion cell after ischemia-reperfusion injury of optic nerve in rabbits. J Korean Ophthalmol Soc. 1998; 39:2687–700.
44. Thornberry NA. Caspases: key mediators of apoptosis. Chem Biol. 1998; 5:97–103.
Article
45. Thornberry NA. The caspase family of cysteine proteases. Br Med Bull. 1997; 53:478–90.
Article
46. Faraco PR, Ledgerwood EC, Vandenabeele P. . Tumor necrosis factor induces distinct patterns of caspase activation in WEHI-164 cells associated with apoptosis or necrosis depending on cell cycle stage. Biochem Biophys Res Commun. 1999; 261:385–92.
Article
47. Tezel G, Wax MB. Inhibition of caspase activity in retinal cell apoptosis induced by various stimuli in vitro. Invest Ophthalmol Vis Sci. 1999; 40:2660–7.
48. Gilliams-Francis KL, Quaye AA, Naegele JR. PARP cleavage, DNA fragmentation, and pyknosis during excitotoxin-induced neuronal death. Exp Neurol. 2003; 184:359–72.
Article