J Bacteriol Virol.  2009 Mar;39(1):41-51. 10.4167/jbv.2009.39.1.41.

Development of RT-PCR Method to Detect Various Human Enteric Viruses

Affiliations
  • 1Department of Bioinformation Technique, Chungbuk National University, Cheongju, Korea. chlee@cbu.ac.kr
  • 2Department of Microbiology, Chungbuk National University, Cheongju, Korea.
  • 3School of Life Science, Seoul National University, Seoul, Korea.
  • 4Research Institute of Public Health & Environment, Seoul. Korea.
  • 5Water Analysis and Research Center, K-water, Daejeon, Korea.

Abstract

Human enteric viruses are one of the major causes of acute gastroenteritis outbreaks. A rapid and precise detection of virus is critical for prompt diagnosis. For this purpose, nucleic acid-based techniques such as reverse transcription (RT)-PCR have been developed. Although RT-PCR is a rapid, specific and sensitive method to detect virus, many steps or reactions are required, especially when various types of viruses are targeted. In this study, we developed a quick and effective method to detect human enteric viruses with a few reactions. Our candidate viruses were as follows: one DNA virus (adenovirus: AdV) and seven RNA viruses including poliovirus (PV), coxsackievirus A (CoxA) and B (CoxB), human rotavirus (HRV), hepatitis A virus (HAV), norovirus (NorV), and astrovirus (AstV). With this amount of samples, theoretically, a total of fifteen biomolecular reactions have to be performed, which include seven RT reactions and eight subsequent PCR with specific primers in each case. Specific primers, enterovirus universal primers, and random primers were applied independently to compare the outcomes of RT and PCR steps in each viral sample. We found that random 9-mer is ideal for the RT reactions of RNA viruses with negligible differences in sensitivity and specificity of viral detection except HRV. Hence, HRV cDNA generated by HRV-specific primer and AdV DNA were amplified in a single tube by duplex PCR. The cDNAs generated by RT using random 9-mers were divided into two reaction tubes without losing sensitivity: one duplex PCR detects enteroviruses (PV, CoxA, CoxB) and HAV, the other detects NorV and AstV. In conclusion, it is possible to detect eight enteric viruses with a substantially reduced number of reactions, which are composed of five reactions, two RT and three PCR reactions.

Keyword

Enteric viruses; RT; PCR; Multiplex

MeSH Terms

Collodion
Disease Outbreaks
DNA
DNA Viruses
DNA, Complementary
Enterovirus
Gastroenteritis
Hepatitis A virus
Hip
Humans
Norovirus
Poliovirus
Polymerase Chain Reaction
Reverse Transcription
RNA Viruses
Rotavirus
Sensitivity and Specificity
Viruses
Collodion
DNA
DNA, Complementary

Figure

  • Figure 1. Detection of human enteric viruses by multiplex RT-PCR. DNA or RNA was extracted from a mixture of 8 different human enteric viruses. cDNA was synthesized from RNA sample by RT reaction using specific primers for HRV or random 9-mer. PCR was performed with specific primer sets for each virus (lane 2, AdV; lane 3, AstV; lane 4, PV; lane 5, CoxA; lane 6, CoxB; lane 7, HAV; lane 8, HRV; lane 9, NorV). Multiplex PCR was performed by using combinations of primer sets for two viruses (lane 10, EntV+HAV; lane 11, AstV+NorV; lane 12, AdV+HRV) or four viruses (lane 13, EntV+HAV+AstV+NorV). Lane 1, size marker. AdV, Adenovirus; AstV, Astrovirus; CoxA, Coxsackievirus A; CoxB, Coxsackievirus B; HAV, Hepatitis A virus; HRV, Human rotavirus; NorV, Norovirus; PV, Poliovirus; EntV, Enterovirus, PV+CoxA+CoxB. Arrows indicate the DNA bands corresponding to the expected PCR products.

  • Figure 2. Suggested protocol of the RT-PCR with minimum hands-on steps to detect human enteric viruses from an unknown sample. AdV, Adenovirus; AstV, Astrovirus; EntV, Enterovirus, CoxA+CoxB+PV; HAV, Hepatitis A virus; HRV, Human rotavirus; NorV, Norovirus.


Reference

1). Rohayem J., Berger S., Juretzek T., Herchenroder O., Mogel M. Poppe M, Henker J, Rethwilm A. A simple and rapid single-step multiplex RT-PCR to detect Norovirus, Astrovirus and Adenovirus in clinical stool samples. J Virol Methods. 2004. 118:49–59.
2). Bryce J, Boschi-Pinto C, Shibuya K, Black RE; WHO Child Health Epidemiology Reference Group. WHO estimates of the causes of death in children. Lancet. 2005. 365:1147–52.
3). Finkbeiner SR., Allred AF., Tarr PI., Klein EJ., Kirkwood CD., Wang D. Metagenomic analysis of human diarrhea: Viral detection and discovery. PLoS Pathog. 2008. 4:e1000011.
Article
4). Wilhelmi I., Roman E., Sanchez-Fauguier A. Viruses causing gastroenteritis. Clin Microbiol Infect. 2003. 9:247–62.
Article
5). Lee JI. Molecular characterization of enteric viruses isolated from acute gastroenteritis patients. Ph.D. Thesis. 2008.
6). Le Guyader FS., Le Saux JC., Ambert-Balay K., Krol J., Serais O., Parnaudeau S., Giraudon H., Delmas G., Pommepuy M., Pothier P., Atmar RL. Aichi virus, Norovirus, Astrovirus, Enterovirus, and Rotavirus involved in clinical cases from a French oyster-related gastroenteritis outbreak. J Clin Microbiol. 2008. 46:4011–7.
Article
7). Kapikian AZ., Wyatt RG., Dolin R., Thornhill TS., Kalica AR., Chanock RM. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J Virol. 1972. 10:1075–81.
Article
8). Beller M., Ellis A., Lee SH., Drebot MA., Jenkerson SA., Funk E., Sobsey MD., Simmons III OD., Monroe SS., Ando T., Noel J., Petric M., Middaugh JP., Spika JS. Outbreak of viral gastroenteritis due to a contaminated well. international consequences. JAMA. 1997. 278:563–8.
Article
9). Fout GS., Martinson BC., Moyer MW., Dahling DR. A multiplex reverse transcription-PCR method for detection of human enteric viruses in groundwater. Appl Environ Microbiol. 2003. 69:3158–64.
Article
10). Harris JR., Cohen ML., Lippy EC. Water-related disease outbreaks in the United States. 1981. J Infect Dis. 1983. 148:759–62.
Article
11). Lawson HW., Braun MM., Glass RI., Stine SE., Monroe SS., Atrash HK., Lee LE., Englender SJ. Waterborne outbreak of Norwalk virus gastroenteritis at a southwest US resort: role of geological formations in contamination of well water. Lancet. 1991. 337:1200–4.
12). Haas CN., Rose JB., Gerba C., Regli S. Risk assessment of virus in drinking water. Risk Anal. 1993. 13:545–52.
Article
13). Atmar RL., Estes MK. Diagnosis of noncultivatable gastroenteritis viruses, the human Caliciviruses. Clin Microbiol Rev. 2001. 14:15–37.
Article
14). Lee GC., Chong CK., Lee CH., Lee ST. Cell-culture-based immunochromatography for rapid detection of group A human rotaviruses in aquatic environments. Environ Technol. 2009. 30:37–43.
Article
15). Allard A., Girones R., Juto P., Wadell G. Polymerase chain reaction for detection of Adenoviruses in stool samples. J Clin Microbiol. 1990. 28:2659–67.
Article
16). Belliot G., Laveran H., Monroe SS. Detection and genetic differentiation of human Astroviruses: Phylogenetic grouping varies by coding region. Arch Virol. 1997. 142:1323–34.
Article
17). Siafakas N., Georgopoulou A., Markoulatos P., Spyrou N., Stanway G. Molecular detection and identification of an Enterovirus during an outbreak of aseptic meningitis. J Clin Lab Anal. 2001. 15:87–95.
Article
18). Zoll GJ., Melchers WJ., Kopecka H., Jambroes G., van der Poel HJ., Galama JM. General Primer-mediated polymerase chain reaction for detection of Enteroviruses: application for diagnostic routine and persistent infections. J Clin Microbiol. 1992. 30:160–5.
Article
19). Hyypiä T., Auvinen P., Maaronen M. Polymerase chain reaction for human picornaviruses. J Gen Virol. 1989. 70:3261–8.
20). Chapman NM., Tracy S., Gauntt CJ., Fortmueller U. Molecular detection and identification of Enteroviruses using enzymatic amplification and nucleic acid hybridization. J Clin Microbiol. 1990. 28:843–50.
Article
21). Nainan OV., Cromeans TL., Margolis HS. Sequence-specific, single-primer amplification and detection of PCR products for identification of hepatitis viruses. J Virol Methods. 1996. 61:127–34.
Article
22). Tsai YL., Tran B., Sangermano LR., Palmer CJ. Detection of Poliovirus, Hepatitis A Virus, and Rotavirus from sewage and ocean water by triplex reverse transcriptase PCR. Appl Environ Microbiol. 1994. 60:2400–7.
Article
23). Gouvea V., Glass RI., Woods P., Taniquchi K., Clark HF., Forrester B., Fang ZY. Polymerase Chain reaction amplification and typing of Rotavirus nucleic acid from stool specimens. J Clin Microbiol. 1990. 28:276–82.
Article
24). Gentsch JR., Glass RI., Woods P., Gouvea V., Gorziglia M., Flores J., Das BK., Bhan MK. Identification of group A Rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol. 1992. 30:1365–73.
Article
25). Ray R., Cooper PJ., Sim R., Chadwick N., Earle P., Dhillon AP., Pounder RE., Wakefield AJ. Direct in situ reverse transcriptase polymerase chain reaction for detection of Measles virus. J Virol Methods. 1996. 60:1–17.
Article
26). Atrasheuskaya AV., Neverov AA., Rubin S., Ignatyev GM. Horizontal transmission of the Leningrad-3 live attenuated Mumps vaccine virus. Vaccine. 2006. 24:1530–6.
Article
27). Kim SH., Cheon DS., Kim JH., Lee DH., Jheong WH., Heo YJ., Chung HM., Jee Y., Lee JS. Outbreaks of gastroenteritis that occurred during school excursions in Korea were associated with several waterborne strains of Norovirus. J Clin Microbiol. 2005. 43:4836–9.
Article
28). Van de Peer Y., De Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci. 1994. 10:569–70.
Article
29). Vinje J., Vennema H., Maunula L., von Bonsdorff CH., Hoehne M., Schreier E., Richards A., Green J., Brown D., Beard SS., Monroe SS., de Bruin E., Svensson L., Koopmans MP. International collaborative study to compare reverse transcriptase PCR assays for detection and genotyping of Noroviruses. J Clin Microbiol. 2003. 41:1423–33.
Article
30). Chezzi C. Rapid diagnosis of Poliovirus infection by PCR amplification. J Clin Microbiol. 1996. 34:1722–5.
Article
31). Rico-Hesse R., Pallansch MA., Nottay BK., Kew OM. Geographic distribution of wild Poliovirus type 1 genotypes. Virology. 1987. 160:311–22.
Article
32). Arfin SM., Long AD., Ito ET., Tolleri L., Riehle MM., Paegle ES., Hatfield GW. Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. J Biol Chem. 2000. 275:29672–84.
33). Radhakrishnan S., Abraham P., Sridharan G. Improved sensitivity of reverse transcriptase polymerase chain reaction for hepatitis C virus using random hexamer primers. Diagn Microbiol Infect Dis. 1999. 33:153–6.
Article
34). Weiner J 3rd., Zimmerman CU., Göhlmann HW., Herrmann R. Transcription profiles of the bacterium Mycoplasma pneumoniae grown at different temperatures. Nucleic Acids Res. 2003. 31:6306–20.
35). Miller CL., Yolken RH. Methods to optimize the generation of cDNA from postmortem human brain tissue. Brain Res Brain Res Protoc. 2003. 10:156–67.
Article
36). Stangegaard M., Dufva IH., Dufva M. Reverse transcription using random pentadecamer primers increases yield and quality of resulting cDNA. Biotechniques. 2006. 40:649–57.
Article
37). Elnifro EM., Ashshi AM., Cooper RJ., Klapper PE. Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev. 2000. 13:559–70.
Article
38). Egger D., Pasamontes L., Ostermayer M., Bienz K. Reverse transcription multiplex PCR for differentiation between Polio-and Enteroviruses from clinical and environmental samples. J Clin Microbiol. 1995. 33:1442–7.
39). Leparc I., Aymard M., Fuchs F. Acute, chronic and persistent enterovirus and poliovirus infections: detection of viral genome by seminested PCR amplification in culture-negative samples. Mol Cell Probes. 1994. 8:487–95.
Article
40). Yang CF., De L., Yang SJ., Ruiz Gómez J., Cruz JR., Holloway BP., Pallansch MA., Kew OM. Genotype-specific in vitro amplification of sequences of the wild type 3 polioviruses from Mexico and Guatemala. Virus Res. 1992. 24:277–96.
41). Cha RS., Thilly WG. Specificity, efficiency, and fidelity of PCR. PCR Methods Appl. 1993. 3:S18–29.
Article
42). Dieffenbach CW., Lowe TM., Dveksler GS. General concepts for PCR primer design. PCR Methods Appl. 1993. 3:S30–7.
Article
43). Henegariu O., Heerema NA., Dlouhy SR., Vance GH., Vogt PH. Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques. 1997. 23:504–11.
Article
44). Brownie J., Shawcross S., Theaker J., Whitcombe D., Ferrie R., Newton C., Little S. The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res. 1997. 25:3235–41.
Article
45). Molenkamp R., van der Ham A., Schinkel J., Beld M. Simultaneous detection of five different DNA targets by real-time Taqman PCR using the Roche Light Cycler 480: Application in viral molecular diagnostics. J Virol Methods. 2007. 141:205–11.
46). Noordhoek GT., Weel JF., Poelstra E., Hooghiemstra M., Brandenburg AH. Clinical validation of a new real-time PCR assay for detection of enteroviruses and parechoviruses, and implications for diagnostic procedures. J Clin Virol. 2008. 41:75–80.
Article
Full Text Links
  • JBV
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr