1. Bailey CJ. New therapies for diabesity. Curr Diab Rep. 2009. 9:360–367.
Article
2. Barber TM, Begbie H, Levy J. The incretin pathway as a new therapeutic target for obesity. Maturitas. 2010. 67:197–202.
Article
3. Bared SM, Buechler C, Boettcher A, Dayoub R, Sigruener A, Grandl M, Rudolph C, Dada A, Schmitz G. Association of ABCA1 with syntaxin 13 and flotillin-1 and enhanced phagocytosis in tangier cells. Mol Biol Cell. 2004. 15:5399–5407.
Article
4. Bennett N. Monitoring techniques for diabetes mellitus in the dog and the cat. Clin Tech Small Anim Pract. 2002. 17:65–69.
Article
5. Berfield AK, Abrass CK. IGF-1 induces foam cell formation in rat glomerular mesangial cells. J Histochem Cytochem. 2002. 50:395–403.
Article
6. Calder PC, Bond JA, Harvey DJ, Gordon S, Newsholme EA. Uptake and incorporation of saturated and unsaturated fatty acids into macrophage lipids and their effect upon macrophage adhesion and phagocytosis. Biochem J. 1990. 269:807–814.
Article
7. Chen D, Liao J, Li N, Zhou C, Liu Q, Wang G, Zhang R, Zhang S, Lin L, Chen K, Xie X, Nan F, Young AA, Wang MW. A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic
db/db mice. Proc Natl Acad Sci USA. 2007. 104:943–948.
Article
8. Clements RS Jr, Bell DSH. Complications of diabetes. Prevalence, detection, current treatment, and prognosis. Am J Med. 1985. 79(5A):2–7.
Article
9. Crenshaw KL, Peterson ME. Pretreatment clinical and laboratory evaluation of cats with diabetes mellitus: 104 cases (1992-1994). J Am Vet Med Assoc. 1996. 209:943–949.
10. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005. 28:1092–1100.
Article
11. Gilor C, Graves TK, Gilor S, Ridge TK, Rick M. The GLP-1 mimetic exenatide potentiates insulin secretion in healthy cats. Domest Anim Endocrinol. 2011. 41:42–49.
Article
12. Glass EJ, Stewart J, Weir DM. Altered immune function in alloxan-induced diabetes in mice. Clin Exp Immunol. 1986. 65:614–621.
13. Guest CB, Hartman ME, O'Connor JC, Chakour KS, Sovari AA, Freund GG. Phagocytosis of cholesteryl ester is amplified in diabetic mouse macrophages and is largely mediated by CD36 and SR-A. PLoS One. 2007. 2:e511.
Article
14. Haghpassand M, Bourassa PAK, Francone OL, Aiello RJ. Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels. J Clin Invest. 2001. 108:1315–1320.
Article
15. Hoenig M. Comparative aspects of diabetes mellitus in dogs and cats. Mol Cell Endocrinol. 2002. 197:221–229.
Article
16. Hoenig M, Dawe DL. A qualitative assay for beta cell antibodies. Preliminary results in dogs with diabetes mellitus. Vet Immunol Immunopathol. 1992. 32:195–203.
Article
17. Hoenig M, Jordan ET, Ferguson DC, de Vries F. Oral glucose leads to a differential response in glucose, insulin, and GLP-1 in lean versus obese cats. Domest Anim Endocrinol. 2010. 38:95–102.
Article
18. Ikejima S, Sasaki S, Sashinami H, Mori F, Ogawa Y, Nakamura T, Abe Y, Wakabayashi K, Suda T, Nakane A. Impairment of host resistance to
Listeria monocytogenes infection in liver of
db/db and
ob/ob mice. Diabetes. 2005. 54:182–189.
Article
19. Ionut V, Liberty IF, Hucking K, Lottati M, Stefanovski D, Zheng D, Bergman RN. Exogenously imposed postprandial-like rises in systemic glucose and GLP-1 do not produce an incretin effect, suggesting an indirect mechanism of GLP-1 action. Am J Physiol Endocrinol Metab. 2006. 291:E779–E785.
Article
20. Joshi N, Caputo GM, Weitekamp MR, Karchmer AW. Infections in patients with diabetes mellitus. N Engl J Med. 1999. 341:1906–1912.
Article
21. Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Porte D Jr, Schwartz MW. Reduced β-cell function contributes to impaired glucose tolerance in dogs made obese by high-fat feeding. Am J Physiol Endocrinol Metab. 1999. 277:E659–E667.
22. Kobayashi K, Forte TM, Taniguchi S, Ishida BY, Oka K, Chan L. The
db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of Western diet feeding. Metabolism. 2000. 49:22–31.
Article
23. Lecube A, Pachón G, Petriz J, Hernández C, Simó R. Phagocytic activity is impaired in type 2 diabetes mellitus and increases after metabolic improvement. PLoS One. 2011. 6:e23366.
Article
24. Lutz TA, Rand JS. Pathogenesis of feline diabetes mellitus. Vet Clin North Am Small Anim Pract. 1995. 25:527–552.
Article
25. Mayr A. Infections which humans in the household transmit to dogs and cats. Zentralbl Bakteriol Mikrobiol Hyg B. 1989. 187:508–526.
26. Melo RCN, Fabrino DL, Dias FF, Parreira GG. Lipid bodies: structural markers of inflammatory macrophages in innate immunity. Inflamm Res. 2006. 55:342–348.
Article
27. Mittelman SD, Van Citters GW, Kirkman EL, Bergman RN. Extreme insulin resistance of the central adipose depot in vivo. Diabetes. 2002. 51:755–761.
Article
28. Panciera DL, Thomas CB, Eicker SW, Atkins CE. Epizootiologic patterns of diabetes mellitus in cats: 333 cases (1980-1986). J Am Vet Med Assoc. 1990. 197:1504–1508.
29. Portnoy DA, Jacks PS, Hinrichs DJ. Role of hemolysin for the intracellular growth of
Listeria monocytogenes. J Exp Med. 1988. 167:1459–1471.
Article
30. Pridal L, Deacon CF, Kirk O, Christensen JV, Carr RD, Holst JJ. Glucagon-like peptide-1(7-37) has a larger volume of distribution than glucagon-like peptide-1(7-36)amide in dogs and is degraded more quickly in vitro by dog plasma. Eur J Drug Metab Pharmacokinet. 1996. 21:51–59.
Article
31. Rand JS, Fleeman LM, Farrow HA, Appleton DJ, Lederer R. Canine and feline diabetes mellitus: nature or nurture? J Nutr. 2004. 134:8 Suppl. 2072S–2080S.
Article
32. Repp H, Pamukçi Z, Koschinski A, Domann E, Darji A, Birringer J, Brockmeier D, Chakraborty T, Dreyer F. Listeriolysin of
Listeria monocytogenes forms Ca
2+-permeable pores leading to intracellular Ca
2+ oscillations. Cell Microbiol. 2002. 4:483–491.
Article
33. Rotella CM, Pala L, Mannucci E. Glucagon-like peptide 1 (GLP-1) and metabolic diseases. J Endocrinol Invest. 2005. 28:746–758.
Article
34. Schlech WF 3rd, Lavigne PM, Bortolussi RA, Allen AC, Haldane EV, Wort AJ, Hightower AW, Johnson SE, King SH, Nicholls ES, Broome CV. Epidemic listeriosis--evidence for transmission by food. N Engl J Med. 1983. 308:203–206.
Article
35. Schoder D, Melzner D, Schmalwieser A, Zangana A, Winter P, Wagner M. Important vectors for
Listeria monocytogenes transmission at farm dairies manufacturing fresh sheep and goat cheese from raw milk. J Food Prot. 2011. 74:919–924.
Article
36. Skogberg K, Syrjänen J, Jahkola M, Renkonen OV, Paavonen J, Ahonen J, Kontiainen S, Ruutu P, Valtonen V. Clinical presentation and outcome of listeriosis in patients with and without immunosuppressive therapy. Clin Infect Dis. 1992. 14:815–821.
Article
37. Slavov E, Georgiev IP, Dzhelebov P, Kanelov I, Andonova M, Georgieva TM, Dimitrova S. High-fat feeding and Staphylococcus intermedius infection impair beta cell function and insulin sensitivity in mongrel dogs. Vet Res Commun. 2010. 34:205–215.
Article
38. Smyth S, Heron A. Diabetes and obesity: the twin epidemics. Nat Med. 2006. 12:75–80.
Article
39. Truett AA, Borne AT, Monteiro MP, West DB. Composition of dietary fat affects blood pressure and insulin responses to dietary obesity in the dog. Obes Res. 1998. 6:137–146.
Article
40. Young AA, Gedulin BR, Bhavsar S, Bodkin N, Jodka C, Hansen B, Denaro M. Glucose-lowering and insulin-sensitizing actions of exendin-4. Studies in obese diabetic (
ob/ob,
db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (
Macaca mulatta). Diabetes. 1999. 48:1026–1034.
Article