Ann Lab Med.  2025 May;45(3):229-246. 10.3343/alm.2024.0482.

Application of Metabolic Biomarkers in Breast Cancer: A Literature Review

Affiliations
  • 1Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gyeonggi-do, Korea
  • 2Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China

Abstract

Breast cancer is the most common cancer and the second leading cause of cancer death in women worldwide. Novel biomarkers for early diagnosis, treatment, and prognosis in breast cancer are needed and extensively studied. Metabolites, which are small molecules produced during metabolic processes, provide links between genetics, environment, and phenotype, making them useful biomarkers for diagnosis, prognosis, and disease classification. With recent advancements in metabolomics techniques, metabolomics research has expanded, which has led to significant progress in biomarker research. In breast cancer, alterations in metabolic pathways result in distinct metabolomic profiles that can be harnessed for biomarker discovery. Studies using mass spectrometry and nuclear magnetic resonance spectroscopy have helped identify significant changes in metabolites, such as amino acids, lipids, and organic acids, in the tissues, blood, and urine of patients with breast cancer, highlighting their potential as biomarkers. Integrative analysis of these metabolite biomarkers with existing clinical parameters is expected to improve the accuracy of breast cancer diagnosis and to be helpful in predicting prognosis and treatment responses. However, to apply these findings in clinical practice, larger cohorts for validation and standardized analytical methods for QC are necessary. In this review, we provide information on the current state of metabolite biomarker research in breast cancer, highlighting key findings and their clinical implications.

Keyword

Biomarker; Breast cancer; Metabolite

Reference

References

1. Xu S, Liu Y, Zhang T, Zheng J, Lin W, Cai J, et al. 2021; The global, regional, and national burden and trends of breast cancer from 1990 to 2019: results from the global burden of disease study 2019. Front Oncol. 11:689562. DOI: 10.3389/fonc.2021.689562. PMID: 34094989. PMCID: PMC8176863. PMID: c9dc02b342464434ad28b953c07e360c.
Article
2. Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, et al. 2023; Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol. 12:3. DOI: 10.1186/s40164-022-00363-1. PMID: 36624542. PMCID: PMC9830930. PMID: 6d7332617b73497aa1cfa4022e682b07.
Article
3. Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. 2021; Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 71:333–58. DOI: 10.3322/caac.21670. PMID: 33982817. PMCID: PMC8298088.
Article
4. Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, et al. 2023; Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther. 8:132. DOI: 10.1038/s41392-023-01399-3. PMID: 36941259. PMCID: PMC10026263. PMID: 1a7077d173ec4d03acc39ed4585d5349.
Article
5. Pan Z, Raftery D. 2007; Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem. 387:525–7. DOI: 10.1007/s00216-006-0687-8. PMID: 16955259.
Article
6. Haghighi F, Naseh G, Mohammadifard M, Abdollahi N. 2017; Comparison of mammography and ultrasonography findings with pathology results in patients with breast cancer in Birjand, Iran. Electron Phys. 9:5494–8. DOI: 10.19082/5494. PMID: 29238489. PMCID: PMC5718853. PMID: 55162e7bb6834dbf912f2ce4d00ddc81.
Article
7. Subramani R, Poudel S, Smith KD, Estrada A, Lakshmanaswamy R. 2022; Metabolomics of breast cancer: a review. Metabolites. 12:643. DOI: 10.3390/metabo12070643. PMID: 35888767. PMCID: PMC9325024. PMID: a8fb7ec84a354e8294c94d7524dbf88b.
Article
8. Safari F, Kehelpannala C, Safarchi A, Batarseh AM, Vafaee F. 2023; Biomarker reproducibility challenge: a review of non-nucleotide biomarker discovery protocols from body fluids in breast cancer diagnosis. Cancers (Basel). 15:2780. DOI: 10.3390/cancers15102780. PMID: 37345117. PMCID: PMC10216598.
Article
9. Amiri-Dashatan N, Yekta RF, Koushki M, Arefi Oskouie A, Esfahani H, Taheri S, et al. 2022; Metabolomic study of serum in patients with invasive ductal breast carcinoma with LC-MS/MS approach. Int J Biol Markers. 37:349–59. DOI: 10.1177/03936155221123343.
Article
10. Xu Y, Zhao B, Xu Z, Li X, Sun Q. 2023; Plasma metabolomic signatures of breast cancer. Front Med (Lausanne). 10:1148542. DOI: 10.3389/fmed.2023.1148542. PMID: 37588002. PMCID: PMC10425771. PMID: cdf9e51d8d7b4136ad20a683f994d92a.
Article
11. Mao C, Wang M, Li L, Tang JH. 2022; Circulating metabolites serve as diagnostic biomarkers for HER2-positive breast cancer and have predictive value for trastuzumab therapy outcomes. J Clin Lab Anal. 36:e24212. DOI: 10.1002/jcla.24212. PMID: 34994982. PMCID: PMC8842188.
Article
12. Huang Y, Du S, Liu J, Huang W, Liu W, Zhang M, et al. 2022; Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints. Proc Natl Acad Sci U S A. 119:e2122245119. DOI: 10.1073/pnas.2122245119. PMID: 35302894. PMCID: PMC8944253.
Article
13. Gong S, Wang Q, Huang J, Huang R, Chen S, Cheng X, et al. 2024; LC-MS/MS platform-based serum untargeted screening reveals the diagnostic biomarker panel and molecular mechanism of breast cancer. Methods. 222:100–11. DOI: 10.1016/j.ymeth.2024.01.003. PMID: 38228196.
Article
14. Park J, Shin Y, Kim TH, Kim DH, Lee A. 2019; Plasma metabolites as possible biomarkers for diagnosis of breast cancer. PLoS One. 14:e0225129. DOI: 10.1371/journal.pone.0225129. PMID: 31794572. PMCID: PMC6890236. PMID: ca1ec910a96148638591c621e4f6c0fb.
Article
15. Onesti CE, Boemer F, Josse C, Leduc S, Bours V, Jerusalem G. 2019; Tryptophan catabolism increases in breast cancer patients compared to healthy controls without affecting the cancer outcome or response to chemotherapy. J Transl Med. 17:239. DOI: 10.1186/s12967-019-1984-2. PMID: 31337401. PMCID: PMC6652004. PMID: 7a8a417cd4f148ca8256f59c2c7a3bf9.
Article
16. Jasbi P, Wang D, Cheng SL, Fei Q, Cui JY, Liu L, et al. 2019; Breast cancer detection using targeted plasma metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 1105:26–37. DOI: 10.1016/j.jchromb.2018.11.029. PMID: 30562627.
Article
17. Zhang Q, Lu R, Wu Y, Hong Y, Wang N, Wang C. 2024; Use of ultra-high performance liquid chromatography-high-resolution mass spectroscopy to profile the metabolites from the serum of patients with breast cancer. Oncol Lett. 27:209. DOI: 10.3892/ol.2024.14342. PMCID: PMC10973928.
Article
18. Platten M, Wick W, Van den Eynde BJ. 2012; Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 72:5435–40. DOI: 10.1158/0008-5472.CAN-12-0569. PMID: 23090118.
Article
19. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, et al. 2005; GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 22:633–42. DOI: 10.1016/j.immuni.2005.03.013. PMID: 15894280.
Article
20. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. 2002; Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 196:459–68. DOI: 10.1084/jem.20020121. PMID: 12186838.
Article
21. Yuan B, Schafferer S, Tang Q, Scheffler M, Nees J, Heil J, et al. 2019; A plasma metabolite panel as biomarkers for early primary breast cancer detection. Int J Cancer. 144:2833–42. DOI: 10.1002/ijc.31996. PMID: 30426507.
Article
22. Cao Y, Feng Y, Zhang Y, Zhu X, Jin F. 2016; L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo. BMC Cancer. 16:343. DOI: 10.1186/s12885-016-2376-0. PMID: 27246354. PMCID: PMC4888479.
Article
23. Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, et al. 2010; Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer. 126:2762–72. DOI: 10.1002/ijc.25202. PMID: 20104527.
Article
24. Fletcher M, Ramirez ME, Sierra RA, Raber P, Thevenot P, Al-Khami AA, et al. 2015; l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 75:275–83. DOI: 10.1158/0008-5472.CAN-14-1491. PMCID: PMC4297565.
25. Park KG, Heys SD, Harris CI, Steele RJ, McNurlan MA, Eremin O, et al. 1991; Arginine metabolism in benign and malignant disease of breast and colon: evidence for possible inhibition of tumor-infiltrating macrophages. Nutrition. 7:185–8. DOI: 10.32388/2l9o5r.
26. Vissers YL, Dejong CH, Luiking YC, Fearon KC, von Meyenfeldt MF, Deutz NE. 2005; Plasma arginine concentrations are reduced in cancer patients: evidence for arginine deficiency? Am J Clin Nutr. 81:1142–6. DOI: 10.1093/ajcn/81.5.1142. PMID: 15883440.
Article
27. Geng D, Sun D, Zhang L, Zhang W. 2015; The therapy of gefitinib towards breast cancer partially through reversing breast cancer biomarker arginine. Afr Health Sci. 15:594–7. DOI: 10.4314/ahs.v15i2.36. PMID: 26124808. PMCID: PMC4480457.
Article
28. Wang X, Zhao X, Chou J, Yu J, Yang T, Liu L, et al. 2018; Taurine, glutamic acid and ethylmalonic acid as important metabolites for detecting human breast cancer based on the targeted metabolomics. Cancer Biomark. 23:255–68. DOI: 10.3233/CBM-181500. PMID: 30103303.
Article
29. Dowling P, Henry M, Meleady P, Clarke C, Gately K, O'Byrne K, et al. 2015; Metabolomic and proteomic analysis of breast cancer patient samples suggests that glutamate and 12-HETE in combination with CA15-3 may be useful biomarkers reflecting tumour burden. Metabolomics. 11:620–35. DOI: 10.1007/s11306-014-0723-1.
Article
30. Suman S, Sharma RK, Kumar V, Sinha N, Shukla Y. 2018; Metabolic fingerprinting in breast cancer stages through 1H NMR spectroscopy-based metabolomic analysis of plasma. J Pharm Biomed Anal. 160:38–45. DOI: 10.1016/j.jpba.2018.07.024. PMID: 30059813.
Article
31. Budczies J, Pfitzner BM, Györffy B, Winzer KJ, Radke C, Dietel M, et al. 2015; Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer. 136:1619–28. DOI: 10.1002/ijc.29152. PMID: 25155347.
Article
32. Mrowiec K, Debik J, Jelonek K, Kurczyk A, Ponge L, Wilk A, et al. 2024; Profiling of serum metabolome of breast cancer: multi-cancer features discriminate between healthy women and patients with breast cancer. Front Oncol. 14:1377373. DOI: 10.3389/fonc.2024.1377373. PMID: 38646441. PMCID: PMC11027565. PMID: 6ffcb6adce7948709ed3aa30fe4cc712.
Article
33. An R, Yu H, Wang Y, Lu J, Gao Y, Xie X, et al. 2022; Integrative analysis of plasma metabolomics and proteomics reveals the metabolic landscape of breast cancer. Cancer Metab. 10:13. DOI: 10.1186/s40170-022-00289-6. PMID: 35978348. PMCID: PMC9382832. PMID: 1f5e1bbeee144a5f8e281de8405a3cea.
Article
34. Navas LE, Carnero A. 2022; Nicotinamide adenine dinucleotide (NAD) metabolism as a relevant target in cancer. Cells. 11:2627. DOI: 10.3390/cells11172627. PMID: 36078035. PMCID: PMC9454445. PMID: e92928abc9b64f5284841709faf4f37f.
Article
35. Santos CR, Schulze A. 2012; Lipid metabolism in cancer. FEBS J. 279:2610–23. DOI: 10.1111/j.1742-4658.2012.08644.x. PMID: 22621751.
Article
36. Li S, Gao D, Jiang Y. 2019; Function, detection and alteration of acylcarnitine metabolism in hepatocellular carcinoma. Metabolites. 9:36. DOI: 10.3390/metabo9020036. PMID: 6fc272576c6d402a94fe02440fd7d033.
Article
37. Wang Y, Chen Y, Guan L, Zhang H, Huang Y, Johnson CH, et al. 2018; Carnitine palmitoyltransferase 1C regulates cancer cell senescence through mitochondria-associated metabolic reprograming. Cell Death Differ. 25:735–48. DOI: 10.1038/s41418-017-0013-3. PMID: 29317762. PMCID: PMC5864250.
Article
38. Lu Y, Li N, Gao L, Xu YJ, Huang C, Yu K, et al. 2016; Acetylcarnitine is a candidate diagnostic and prognostic biomarker of hepatocellular carcinoma. Cancer Res. 76:2912–20. DOI: 10.1158/0008-5472.CAN-15-3199. PMID: 26976432.
Article
39. Kozar N, Kruusmaa K, Bitenc M, Argamasilla R, Adsuar A, Takač I, et al. 2021; Identification of novel diagnostic biomarkers in breast cancer using targeted metabolomic profiling. Clin Breast Cancer. 21:e204–11. DOI: 10.1016/j.clbc.2020.09.006. PMID: 33281038.
Article
40. Cala M, Aldana J, Sánchez J, Guio J, Meesters RJW. 2018; Apr. 15. Urinary metabolite and lipid alterations in Colombian Hispanic women with breast cancer: a pilot study. J Pharm Biomed Anal. 15:234–41. DOI: 10.1016/j.jpba.2018.02.009. PMID: 29428809.
Article
41. Wei Y, Jasbi P, Shi X, Turner C, Hrovat J, Liu L, et al. 2021; Early breast cancer detection using untargeted and targeted metabolomics. J Proteome Res. 20:3124–33. DOI: 10.1021/acs.jproteome.1c00019. PMID: 34033488.
Article
42. Borin TF, Angara K, Rashid MH, Achyut BR, Arbab AS. 2017; Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis. Int J Mol Sci. 18:2661. DOI: 10.3390/ijms18122661. PMID: 29292756. PMCID: PMC5751263.
Article
43. Hammamieh R, Sumaida D, Zhang X, Das R, Jett M. 2007; Control of the growth of human breast cancer cells in culture by manipulation of arachidonate metabolism. BMC Cancer. 7:138. DOI: 10.1186/1471-2407-7-138. PMID: 17651499. PMCID: PMC1940258. PMID: f451c0651788460ca62d56c59bd0b95c.
Article
44. Jiang N, Zhang G, Pan L, Yan C, Zhang L, Weng Y, et al. 2017; Potential plasma lipid biomarkers in early-stage breast cancer. Biotechnol Lett. 39:1657–66. DOI: 10.1007/s10529-017-2417-z. PMID: 28828718.
Article
45. Buentzel J, Klemp HG, Kraetzner R, Schulz M, Dihazi GH, Streit F, et al. 2021; Metabolomic profiling of blood-derived microvesicles in breast cancer patients. Int J Mol Sci. 22:13540. DOI: 10.3390/ijms222413540. PMID: 34948336. PMCID: PMC8707654.
Article
46. Bizzarri M, Dinicola S, Bevilacqua A, Cucina A. 2016; Broad spectrum anticancer activity of myo-inositol and inositol hexakisphosphate. Int J Endocrinol. 2016:5616807. DOI: 10.1155/2016/5616807. PMID: 27795708. PMCID: PMC5067332. PMID: a86620d618a3456185b903fdaba309e2.
Article
47. Parks SK, Mueller-Klieser W, Pouysségur J. 2020; Lactate and acidity in the cancer microenvironment. Annu Rev Cancer Biol. 4:141–58. DOI: 10.1146/annurev-cancerbio-030419-033556.
Article
48. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. 2013; Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 154:651–63. DOI: 10.1016/j.cell.2013.06.037. PMID: 23911327.
Article
49. Kondo M, Yamaoka T, Honda S, Miwa Y, Katashima R, Moritani M, et al. 2000; The rate of cell growth is regulated by purine biosynthesis via ATP production and G(1) to S phase transition. J Biochem. 128:57–64. DOI: 10.1093/oxfordjournals.jbchem.a022730. PMID: 10876158.
Article
50. Wang C, Sun B, Guo L, Wang X, Ke C, Liu S, et al. 2014; Volatile organic metabolites identify patients with breast cancer, cyclomastopathy, and mammary gland fibroma. Sci Rep. 4:5383. DOI: 10.1038/srep05383. PMID: 24947160. PMCID: PMC4064322.
Article
51. Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J. 2010; Volatile biomarkers in the breath of women with breast cancer. J Breath Res. 4:026003. DOI: 10.1088/1752-7155/4/2/026003. PMID: 21383471.
Article
52. Lécuyer L, Victor Bala A, Deschasaux M, Bouchemal N, Nawfal Triba M, Vasson MP, et al. 2018; NMR metabolomic signatures reveal predictive plasma metabolites associated with long-term risk of developing breast cancer. Int J Epidemiol. 47:484–94. DOI: 10.1093/ije/dyx271. PMID: 29365091.
Article
53. Lécuyer L, Dalle C, Lyan B, Demidem A, Rossary A, Vasson MP, et al. 2019; Plasma metabolomic signatures associated with long-term breast cancer risk in the SU.VI.MAX prospective cohort. Cancer Epidemiol Biomarkers Prev. 28:1300–7. DOI: 10.1158/1055-9965.EPI-19-0154. PMID: 31164347.
Article
54. His M, Viallon V, Dossus L, Gicquiau A, Achaintre D, Scalbert A, et al. 2019; Prospective analysis of circulating metabolites and breast cancer in EPIC. BMC Med. 17:178. DOI: 10.1186/s12916-019-1408-4. PMID: 31547832. PMCID: PMC6757362. PMID: c60433d4b3be4f90a9e8f0ef6929958a.
Article
55. Nagata C, Wada K, Tsuji M, Hayashi M, Takeda N, Yasuda K. 2014; Plasma amino acid profiles are associated with biomarkers of breast cancer risk in premenopausal Japanese women. Cancer Causes Control. 25:143–9. DOI: 10.1007/s10552-013-0316-8.
Article
56. Brittenden J, Park KG, Heys SD, Ross C, Ashby J, Ah-See A, et al. 1994; L-arginine stimulates host defenses in patients with breast cancer. Surgery. 115:205–12. DOI: 10.1093/jnci/29.5.817.
57. Yoo HJ, Kim M, Kim M, Kang M, Jung KJ, Hwang SM, et al. 2018; Analysis of metabolites and metabolic pathways in breast cancer in a Korean prospective cohort: the Korean Cancer Prevention study-II. Metabolomics. 14:85. DOI: 10.1007/s11306-018-1382-4. PMID: 30830383.
Article
58. Brantley KD, Zeleznik OA, Rosner B, Tamimi RM, Avila-Pacheco J, Clish CB, et al. 2022; Plasma metabolomics and breast cancer risk over 20 years of follow-up among postmenopausal women in the nurses' health study. Cancer Epidemiol Biomarkers Prev. 31:839–50. DOI: 10.1158/1055-9965.EPI-21-1023. PMID: 35064065. PMCID: PMC8983458.
Article
59. Boyle P, Koechlin A, Pizot C, Boniol M, Robertson C, Mullie P, et al. 2013; Blood glucose concentrations and breast cancer risk in women without diabetes: a meta-analysis. Eur J Nutr. 52:1533–40. DOI: 10.1007/s00394-012-0460-z. PMID: 23124254.
Article
60. Houghton SC, Eliassen AH, Zhang SM, Selhub J, Rosner BA, Willett WC, et al. 2019; Plasma B-vitamins and one-carbon metabolites and the risk of breast cancer in younger women. Breast Cancer Res Treat. 176:191–203. DOI: 10.1007/s10549-019-05223-x. PMID: 30955184. PMCID: PMC6551273.
Article
61. Playdon MC, Ziegler RG, Sampson JN, Stolzenberg-Solomon R, Thompson HJ, Irwin ML, et al. 2017; Nutritional metabolomics and breast cancer risk in a prospective study. Am J Clin Nutr. 106:637–49. DOI: 10.3945/ajcn.116.150912. PMID: 28659298. PMCID: PMC5525118.
Article
62. Kim S, Taylor JA, Milne GL, Sandler DP. 2013; Association between urinary prostaglandin E2 metabolite and breast cancer risk: a prospective, case-cohort study of postmenopausal women. Cancer Prev Res (Phila). 6:511–8. DOI: 10.1158/1940-6207.CAPR-13-0040. PMID: 23636050. PMCID: PMC3677792.
Article
63. Cui Y, Shu XO, Gao YT, Cai Q, Ji BT, Li HL, et al. 2014; Urinary prostaglandin E2 metabolite and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 23:2866–73. DOI: 10.1158/1055-9965.EPI-14-0685. PMID: 25214156. PMCID: PMC4257848.
Article
64. Cianfrocca M, Goldstein LJ. 2004; Prognostic and predictive factors in early-stage breast cancer. Oncologist. 9:606–16. DOI: 10.1634/theoncologist.9-6-606. PMID: 15561805.
Article
65. Xie X, Wang X, Liang Y, Yang J, Wu Y, Li L, et al. 2021; Evaluating cancer-related biomarkers based on pathological images: a systematic review. Front Oncol. 11:763527. DOI: 10.3389/fonc.2021.763527. PMID: 34900711. PMCID: PMC8660076. PMID: 36b85eebf7f947cdabb2f2cf80209d86.
Article
66. Giskeødegård GF, Lundgren S, Sitter B, Fjøsne HE, Postma G, Buydens LM, et al. 2012; Lactate and glycine-potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers. NMR Biomed. 25:1271–9. DOI: 10.1002/nbm.2798. PMID: 22407957.
Article
67. Sitter B, Bathen TF, Singstad TE, Fjøsne HE, Lundgren S, Halgunset J, et al. 2010; Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR Biomed. 23:424–31. DOI: 10.1002/nbm.1478. PMID: 20101607.
Article
68. di Salvo ML, Contestabile R, Paiardini A, Maras B. 2013; Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: the heme connection. Med Hypotheses. 80:633–6. DOI: 10.1016/j.mehy.2013.02.008.
Article
69. Yien YY, Perfetto M. 2022; Regulation of heme synthesis by mitochondrial homeostasis proteins. Front Cell Dev Biol. 10:895521. DOI: 10.3389/fcell.2022.895521. PMID: 35832791. PMCID: PMC9272004. PMID: 5b1d6b9dee2f45419a7b05ffd103580e.
Article
70. Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G. 2014; Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–8. DOI: 10.1016/j.tibs.2014.02.004. PMID: 24657017.
Article
71. Pan S, Fan M, Liu Z, Li X, Wang H. 2021; Serine, glycine and one-carbon metabolism in cancer (Review). Int J Oncol. 58:158–70. DOI: 10.3892/ijo.2020.5158. PMID: 33491748. PMCID: PMC7864012.
Article
72. Purwaha P, Gu F, Piyarathna DWB, Rajendiran T, Ravindran A, Omilian AR, et al. 2018; Unbiased lipidomic profiling of triple-negative breast cancer tissues reveals the association of sphingomyelin levels with patient disease-free survival. Metabolites. 8:41. DOI: 10.3390/metabo8030041. PMCID: PMC6161031. PMID: e28337a9714c471f8b98afc7bea72620.
Article
73. Sarkar S, Maceyka M, Hait NC, Paugh SW, Sankala H, Milstien S, et al. 2005; Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett. 579:5313–7. DOI: 10.1016/j.febslet.2005.08.055. PMID: 16194537.
Article
74. Vethakanraj HS, Babu TA, Sudarsanan GB, Duraisamy PK, Ashok Kumar S. 2015; Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines. Biochem Biophys Res Commun. 464:833–9. DOI: 10.1016/j.bbrc.2015.07.047. PMID: 26188095.
Article
75. Mukhopadhyay P, Ramanathan R, Takabe K. 2015; S1P promotes breast cancer progression by angiogenesis and lymphangiogenesis. Breast Cancer Manag. 4:241–4. DOI: 10.2217/bmt.15.20. PMID: 27293484. PMCID: PMC4900461.
Article
76. Kennedy KM, Dewhirst MW. 2010; Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 6:127–48. DOI: 10.2217/fon.09.145. PMID: 20021214. PMCID: PMC2819205.
Article
77. Yotnda P, Wu D, Swanson AM. 2010; Hypoxic tumors and their effect on immune cells and cancer therapy. Methods Mol Biol. 651:1–29. DOI: 10.1007/978-1-60761-786-0_1. PMID: 20686957.
Article
78. Terunuma A, Putluri N, Mishra P, Mathé EA, Dorsey TH, Yi M, et al. 2014; MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 124:398–412. DOI: 10.1172/JCI71180. PMID: 24316975.
Article
79. Du X, Hu H. 2021; The roles of 2-hydroxyglutarate. Front Cell Dev Biol. 9:651317. DOI: 10.3389/fcell.2021.651317. PMID: 33842477. PMCID: PMC8033037. PMID: 6ef4a89115b547cbb5908ca89639b053.
Article
80. Seibold P, Vrieling A, Johnson TS, Buck K, Behrens S, Kaaks R, et al. 2014; Enterolactone concentrations and prognosis after postmenopausal breast cancer: assessment of effect modification and meta-analysis. Int J Cancer. 135:923–33. DOI: 10.1002/ijc.28729. PMID: 24436155.
Article
81. Jaskulski S, Jung AY, Behrens S, Johnson T, Kaaks R, Thöne K, et al. 2018; Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. Int J Cancer. 143:2698–708. DOI: 10.1002/ijc.31647. PMID: 29974464.
Article
82. Jaskulski S, Jung AY, Huebner M, Poschet G, Hell R, Hüsing A, et al. 2020; Prognostic associations of circulating phytoestrogens and biomarker changes in long-term survivors of postmenopausal breast cancer. Nutr Cancer. 72:1155–69. DOI: 10.1080/01635581.2019.1672762. PMID: 31617773.
Article
83. Riggio AI, Varley KE, Welm AL. 2021; The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer. 124:13–26. DOI: 10.1038/s41416-020-01161-4. PMID: 33239679. PMCID: PMC7782773.
Article
84. D'Amato NC, Rogers TJ, Gordon MA, Greene LI, Cochrane DR, Spoelstra NS, et al. 2015; A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res. 75:4651–64. DOI: 10.1158/0008-5472.CAN-15-2011. PMID: 26363006. PMCID: PMC4631670.
85. Fan Y, Zhou X, Xia TS, Chen Z, Li J, Liu Q, et al. 2016; Human plasma metabolomics for identifying differential metabolites and predicting molecular subtypes of breast cancer. Oncotarget. 7:9925–38. DOI: 10.18632/oncotarget.7155. PMID: 26848530. PMCID: PMC4891093.
Article
86. Jin Y, Fan S, Jiang W, Zhang J, Yang L, Xiao J, et al. 2023; Two effective models based on comprehensive lipidomics and metabolomics can distinguish BC versus HCs, and TNBC versus non-TNBC. Proteomics Clin Appl. 17:e2200042. DOI: 10.1002/prca.202200042. PMID: 36443927.
Article
87. Wang Z, Jiang Q, Dong C. 2020; Metabolic reprogramming in triple-negative breast cancer. Cancer Biol Med. 17:44–59. DOI: 10.20892/j.issn.2095-3941.2019.0210. PMID: 32296576. PMCID: PMC7142847. PMID: ce48638b9def40978e0fa4c4cb99e36c.
Article
88. Ni R, Li Z, Li L, Peng D, Ming Y, Li L, et al. 2023; Rethinking glutamine metabolism and the regulation of glutamine addiction by oncogenes in cancer. Front Oncol. 13:1143798. DOI: 10.3389/fonc.2023.1143798. PMID: 36959802. PMCID: PMC10029103. PMID: 61e8576a86f14a058ada8a2aeb4835c5.
Article
89. Wang B, Pei J, Xu S, Liu J, Yu J. 2024; A glutamine tug-of-war between cancer and immune cells: recent advances in unraveling the ongoing battle. J Exp Clin Cancer Res. 43:74. DOI: 10.1186/s13046-024-02994-0. PMID: 38459595. PMCID: PMC10921613. PMID: a42b4142fbbc43418dbe495cd1d0a768.
Article
90. Wang R, Zhao H, Zhang X, Zhao X, Song Z, Ouyang J. 2019; Metabolic discrimination of breast cancer subtypes at the single-cell level by multiple microextraction coupled with mass spectrometry. Anal Chem. 91:3667–74. DOI: 10.1021/acs.analchem.8b05739. PMID: 30702862.
Article
91. Baker PR, Wilton JC, Jones CE, Stenzel DJ, Watson N, Smith GJ. 1992; Bile acids influence the growth, oestrogen receptor and oestrogen-regulated proteins of MCF-7 human breast cancer cells. Br J Cancer. 65:566–72. DOI: 10.1038/bjc.1992.115. PMCID: PMC1977566.
Article
92. Zidi O, Souai N, Raies H, Ben Ayed F, Mezlini A, Mezrioui S, et al. 2021; Fecal metabolic profiling of breast cancer patients during neoadjuvant chemotherapy reveals potential biomarkers. Molecules. 26:2266. DOI: 10.3390/molecules26082266. PMID: 33919750. PMCID: PMC8070723. PMID: dbde23ac2c6441cdbac49c956bac32d5.
Article
93. Lin X, Xu R, Mao S, Zhang Y, Dai Y, Guo Q, et al. 2019; Metabolic biomarker signature for predicting the effect of neoadjuvant chemotherapy of breast cancer. Ann Transl Med. 7:670. DOI: 10.21037/atm.2019.10.34. PMID: 31930071. PMCID: PMC6944618.
Article
94. Wei S, Liu L, Zhang J, Bowers J, Gowda GA, Seeger H, et al. 2013; Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer. Mol Oncol. 7:297–307. DOI: 10.1016/j.molonc.2012.10.003. PMID: 23142658. PMCID: PMC5528483.
Article
95. Cardoso MR, Silva AAR, Talarico MCR, Sanches PHG, Sforça ML, Rocco SA, et al. 2022; Metabolomics by NMR combined with machine learning to predict neoadjuvant chemotherapy response for breast cancer. Cancers (Basel). 14:5055. DOI: 10.3390/cancers14205055. PMID: 36291837. PMCID: PMC9600495.
Article
96. Silva AAR, Cardoso MR, Oliveira DC, Godoy P, Talarico MCR, Gutiérrez JM, et al. 2024; Plasma metabolome signatures to predict responsiveness to neoadjuvant chemotherapy in breast cancer. Cancers (Basel). 16:2473. DOI: 10.3390/cancers16132473. PMID: 39001535. PMCID: PMC11240312.
Article
97. Bronte V, Zanovello P. 2005; Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 5:641–54. DOI: 10.1038/nri1668. PMID: 16056256.
Article
98. Tian Z, Rao Q, He Z, Zhao W, Chen L, Liu J, et al. 2023; Effect of 1H-NMR serum lipoproteins on immunotherapy response in advanced triple-negative breast cancer patients. Cancer Sci. 114:3924–34. DOI: 10.1111/cas.15937. PMID: 37640025. PMCID: PMC10551590.
99. Krall AS, Xu S, Graeber TG, Braas D, Christofk HR. 2016; Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 7:11457. DOI: 10.1038/ncomms11457. PMID: 27126896. PMCID: PMC4855534. PMID: 60bac93b7d0d4ccbba58a39386a3ee0d.
Article
100. Wang X, Gong W, Xiong X, Jia X, Xu J. 2024; Asparagine: A key metabolic junction in targeted tumor therapy. Pharmacol Res. 206:107292. DOI: 10.1016/j.phrs.2024.107292. PMID: 39002867.
Article
101. Taborda Ribas H, Sogayar MC, Dolga AM, Winnischofer SMB, Trombetta-Lima M. 2024; Lipid profile in breast cancer: from signaling pathways to treatment strategies. Biochimie. 219:118–29. DOI: 10.1016/j.biochi.2023.11.008. PMID: 37993054.
Article
102. Vasseur S, Guillaumond F. 2022; Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis. 11:46. DOI: 10.1038/s41389-022-00420-8. PMID: 35945203. PMCID: PMC9363460. PMID: 7e3d102706634a44b80250aa8187e0b4.
Article
103. van Asten JJ, Vettukattil R, Buckle T, Rottenberg S, van Leeuwen F, Bathen TF, et al. 2015; Increased levels of choline metabolites are an early marker of docetaxel treatment response in BRCA1-mutated mouse mammary tumors: an assessment by ex vivo proton magnetic resonance spectroscopy. J Transl Med. 13:114. DOI: 10.1186/s12967-015-0458-4. PMID: 25890200. PMCID: PMC4404119.
Article
104. Fuhler GM, Eppinga H, Peppelenbosch MP. 2017; Fumarates and cancer. Trends Mol Med. 23:3–5. DOI: 10.1016/j.molmed.2016.12.001.
Article
105. Sciacovelli M, Frezza C. 2016; Oncometabolites: unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med. 100:175–81. DOI: 10.1016/j.freeradbiomed.2016.04.025. PMID: 27117029. PMCID: PMC5145802.
Article
106. Johnson CH, Gonzalez FJ. 2012; Challenges and opportunities of metabolomics. J Cell Physiol. 227:2975–81. DOI: 10.1002/jcp.24002. PMID: 22034100. PMCID: PMC6309313.
Article
107. Beger RD. 2013; A review of applications of metabolomics in cancer. Metabolites. 3:552–74. DOI: 10.3390/metabo3030552. PMID: 24958139. PMCID: PMC3901293. PMID: 2342fe232112469aaa032e101a4e3e95.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr