3. Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. 2021; Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 71:333–58. DOI:
10.3322/caac.21670. PMID:
33982817. PMCID:
PMC8298088.
Article
8. Safari F, Kehelpannala C, Safarchi A, Batarseh AM, Vafaee F. 2023; Biomarker reproducibility challenge: a review of non-nucleotide biomarker discovery protocols from body fluids in breast cancer diagnosis. Cancers (Basel). 15:2780. DOI:
10.3390/cancers15102780. PMID:
37345117. PMCID:
PMC10216598.
Article
9. Amiri-Dashatan N, Yekta RF, Koushki M, Arefi Oskouie A, Esfahani H, Taheri S, et al. 2022; Metabolomic study of serum in patients with invasive ductal breast carcinoma with LC-MS/MS approach. Int J Biol Markers. 37:349–59. DOI:
10.1177/03936155221123343.
Article
11. Mao C, Wang M, Li L, Tang JH. 2022; Circulating metabolites serve as diagnostic biomarkers for HER2-positive breast cancer and have predictive value for trastuzumab therapy outcomes. J Clin Lab Anal. 36:e24212. DOI:
10.1002/jcla.24212. PMID:
34994982. PMCID:
PMC8842188.
Article
12. Huang Y, Du S, Liu J, Huang W, Liu W, Zhang M, et al. 2022; Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints. Proc Natl Acad Sci U S A. 119:e2122245119. DOI:
10.1073/pnas.2122245119. PMID:
35302894. PMCID:
PMC8944253.
Article
13. Gong S, Wang Q, Huang J, Huang R, Chen S, Cheng X, et al. 2024; LC-MS/MS platform-based serum untargeted screening reveals the diagnostic biomarker panel and molecular mechanism of breast cancer. Methods. 222:100–11. DOI:
10.1016/j.ymeth.2024.01.003. PMID:
38228196.
Article
16. Jasbi P, Wang D, Cheng SL, Fei Q, Cui JY, Liu L, et al. 2019; Breast cancer detection using targeted plasma metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 1105:26–37. DOI:
10.1016/j.jchromb.2018.11.029. PMID:
30562627.
Article
17. Zhang Q, Lu R, Wu Y, Hong Y, Wang N, Wang C. 2024; Use of ultra-high performance liquid chromatography-high-resolution mass spectroscopy to profile the metabolites from the serum of patients with breast cancer. Oncol Lett. 27:209. DOI:
10.3892/ol.2024.14342. PMCID:
PMC10973928.
Article
19. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, et al. 2005; GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 22:633–42. DOI:
10.1016/j.immuni.2005.03.013. PMID:
15894280.
Article
20. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. 2002; Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 196:459–68. DOI:
10.1084/jem.20020121. PMID:
12186838.
Article
21. Yuan B, Schafferer S, Tang Q, Scheffler M, Nees J, Heil J, et al. 2019; A plasma metabolite panel as biomarkers for early primary breast cancer detection. Int J Cancer. 144:2833–42. DOI:
10.1002/ijc.31996. PMID:
30426507.
Article
22. Cao Y, Feng Y, Zhang Y, Zhu X, Jin F. 2016; L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo. BMC Cancer. 16:343. DOI:
10.1186/s12885-016-2376-0. PMID:
27246354. PMCID:
PMC4888479.
Article
23. Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, et al. 2010; Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer. 126:2762–72. DOI:
10.1002/ijc.25202. PMID:
20104527.
Article
24. Fletcher M, Ramirez ME, Sierra RA, Raber P, Thevenot P, Al-Khami AA, et al. 2015; l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 75:275–83. DOI:
10.1158/0008-5472.CAN-14-1491. PMCID:
PMC4297565.
25. Park KG, Heys SD, Harris CI, Steele RJ, McNurlan MA, Eremin O, et al. 1991; Arginine metabolism in benign and malignant disease of breast and colon: evidence for possible inhibition of tumor-infiltrating macrophages. Nutrition. 7:185–8. DOI:
10.32388/2l9o5r.
26. Vissers YL, Dejong CH, Luiking YC, Fearon KC, von Meyenfeldt MF, Deutz NE. 2005; Plasma arginine concentrations are reduced in cancer patients: evidence for arginine deficiency? Am J Clin Nutr. 81:1142–6. DOI:
10.1093/ajcn/81.5.1142. PMID:
15883440.
Article
27. Geng D, Sun D, Zhang L, Zhang W. 2015; The therapy of gefitinib towards breast cancer partially through reversing breast cancer biomarker arginine. Afr Health Sci. 15:594–7. DOI:
10.4314/ahs.v15i2.36. PMID:
26124808. PMCID:
PMC4480457.
Article
28. Wang X, Zhao X, Chou J, Yu J, Yang T, Liu L, et al. 2018; Taurine, glutamic acid and ethylmalonic acid as important metabolites for detecting human breast cancer based on the targeted metabolomics. Cancer Biomark. 23:255–68. DOI:
10.3233/CBM-181500. PMID:
30103303.
Article
29. Dowling P, Henry M, Meleady P, Clarke C, Gately K, O'Byrne K, et al. 2015; Metabolomic and proteomic analysis of breast cancer patient samples suggests that glutamate and 12-HETE in combination with CA15-3 may be useful biomarkers reflecting tumour burden. Metabolomics. 11:620–35. DOI:
10.1007/s11306-014-0723-1.
Article
30. Suman S, Sharma RK, Kumar V, Sinha N, Shukla Y. 2018; Metabolic fingerprinting in breast cancer stages through
1H NMR spectroscopy-based metabolomic analysis of plasma. J Pharm Biomed Anal. 160:38–45. DOI:
10.1016/j.jpba.2018.07.024. PMID:
30059813.
Article
31. Budczies J, Pfitzner BM, Györffy B, Winzer KJ, Radke C, Dietel M, et al. 2015; Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer. 136:1619–28. DOI:
10.1002/ijc.29152. PMID:
25155347.
Article
37. Wang Y, Chen Y, Guan L, Zhang H, Huang Y, Johnson CH, et al. 2018; Carnitine palmitoyltransferase 1C regulates cancer cell senescence through mitochondria-associated metabolic reprograming. Cell Death Differ. 25:735–48. DOI:
10.1038/s41418-017-0013-3. PMID:
29317762. PMCID:
PMC5864250.
Article
38. Lu Y, Li N, Gao L, Xu YJ, Huang C, Yu K, et al. 2016; Acetylcarnitine is a candidate diagnostic and prognostic biomarker of hepatocellular carcinoma. Cancer Res. 76:2912–20. DOI:
10.1158/0008-5472.CAN-15-3199. PMID:
26976432.
Article
39. Kozar N, Kruusmaa K, Bitenc M, Argamasilla R, Adsuar A, Takač I, et al. 2021; Identification of novel diagnostic biomarkers in breast cancer using targeted metabolomic profiling. Clin Breast Cancer. 21:e204–11. DOI:
10.1016/j.clbc.2020.09.006. PMID:
33281038.
Article
40. Cala M, Aldana J, Sánchez J, Guio J, Meesters RJW. 2018; Apr. 15. Urinary metabolite and lipid alterations in Colombian Hispanic women with breast cancer: a pilot study. J Pharm Biomed Anal. 15:234–41. DOI:
10.1016/j.jpba.2018.02.009. PMID:
29428809.
Article
41. Wei Y, Jasbi P, Shi X, Turner C, Hrovat J, Liu L, et al. 2021; Early breast cancer detection using untargeted and targeted metabolomics. J Proteome Res. 20:3124–33. DOI:
10.1021/acs.jproteome.1c00019. PMID:
34033488.
Article
42. Borin TF, Angara K, Rashid MH, Achyut BR, Arbab AS. 2017; Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis. Int J Mol Sci. 18:2661. DOI:
10.3390/ijms18122661. PMID:
29292756. PMCID:
PMC5751263.
Article
44. Jiang N, Zhang G, Pan L, Yan C, Zhang L, Weng Y, et al. 2017; Potential plasma lipid biomarkers in early-stage breast cancer. Biotechnol Lett. 39:1657–66. DOI:
10.1007/s10529-017-2417-z. PMID:
28828718.
Article
45. Buentzel J, Klemp HG, Kraetzner R, Schulz M, Dihazi GH, Streit F, et al. 2021; Metabolomic profiling of blood-derived microvesicles in breast cancer patients. Int J Mol Sci. 22:13540. DOI:
10.3390/ijms222413540. PMID:
34948336. PMCID:
PMC8707654.
Article
48. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. 2013; Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 154:651–63. DOI:
10.1016/j.cell.2013.06.037. PMID:
23911327.
Article
49. Kondo M, Yamaoka T, Honda S, Miwa Y, Katashima R, Moritani M, et al. 2000; The rate of cell growth is regulated by purine biosynthesis via ATP production and G(1) to S phase transition. J Biochem. 128:57–64. DOI:
10.1093/oxfordjournals.jbchem.a022730. PMID:
10876158.
Article
50. Wang C, Sun B, Guo L, Wang X, Ke C, Liu S, et al. 2014; Volatile organic metabolites identify patients with breast cancer, cyclomastopathy, and mammary gland fibroma. Sci Rep. 4:5383. DOI:
10.1038/srep05383. PMID:
24947160. PMCID:
PMC4064322.
Article
51. Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J. 2010; Volatile biomarkers in the breath of women with breast cancer. J Breath Res. 4:026003. DOI:
10.1088/1752-7155/4/2/026003. PMID:
21383471.
Article
52. Lécuyer L, Victor Bala A, Deschasaux M, Bouchemal N, Nawfal Triba M, Vasson MP, et al. 2018; NMR metabolomic signatures reveal predictive plasma metabolites associated with long-term risk of developing breast cancer. Int J Epidemiol. 47:484–94. DOI:
10.1093/ije/dyx271. PMID:
29365091.
Article
53. Lécuyer L, Dalle C, Lyan B, Demidem A, Rossary A, Vasson MP, et al. 2019; Plasma metabolomic signatures associated with long-term breast cancer risk in the SU.VI.MAX prospective cohort. Cancer Epidemiol Biomarkers Prev. 28:1300–7. DOI:
10.1158/1055-9965.EPI-19-0154. PMID:
31164347.
Article
55. Nagata C, Wada K, Tsuji M, Hayashi M, Takeda N, Yasuda K. 2014; Plasma amino acid profiles are associated with biomarkers of breast cancer risk in premenopausal Japanese women. Cancer Causes Control. 25:143–9. DOI:
10.1007/s10552-013-0316-8.
Article
56. Brittenden J, Park KG, Heys SD, Ross C, Ashby J, Ah-See A, et al. 1994; L-arginine stimulates host defenses in patients with breast cancer. Surgery. 115:205–12. DOI:
10.1093/jnci/29.5.817.
57. Yoo HJ, Kim M, Kim M, Kang M, Jung KJ, Hwang SM, et al. 2018; Analysis of metabolites and metabolic pathways in breast cancer in a Korean prospective cohort: the Korean Cancer Prevention study-II. Metabolomics. 14:85. DOI:
10.1007/s11306-018-1382-4. PMID:
30830383.
Article
58. Brantley KD, Zeleznik OA, Rosner B, Tamimi RM, Avila-Pacheco J, Clish CB, et al. 2022; Plasma metabolomics and breast cancer risk over 20 years of follow-up among postmenopausal women in the nurses' health study. Cancer Epidemiol Biomarkers Prev. 31:839–50. DOI:
10.1158/1055-9965.EPI-21-1023. PMID:
35064065. PMCID:
PMC8983458.
Article
59. Boyle P, Koechlin A, Pizot C, Boniol M, Robertson C, Mullie P, et al. 2013; Blood glucose concentrations and breast cancer risk in women without diabetes: a meta-analysis. Eur J Nutr. 52:1533–40. DOI:
10.1007/s00394-012-0460-z. PMID:
23124254.
Article
60. Houghton SC, Eliassen AH, Zhang SM, Selhub J, Rosner BA, Willett WC, et al. 2019; Plasma B-vitamins and one-carbon metabolites and the risk of breast cancer in younger women. Breast Cancer Res Treat. 176:191–203. DOI:
10.1007/s10549-019-05223-x. PMID:
30955184. PMCID:
PMC6551273.
Article
61. Playdon MC, Ziegler RG, Sampson JN, Stolzenberg-Solomon R, Thompson HJ, Irwin ML, et al. 2017; Nutritional metabolomics and breast cancer risk in a prospective study. Am J Clin Nutr. 106:637–49. DOI:
10.3945/ajcn.116.150912. PMID:
28659298. PMCID:
PMC5525118.
Article
62. Kim S, Taylor JA, Milne GL, Sandler DP. 2013; Association between urinary prostaglandin E2 metabolite and breast cancer risk: a prospective, case-cohort study of postmenopausal women. Cancer Prev Res (Phila). 6:511–8. DOI:
10.1158/1940-6207.CAPR-13-0040. PMID:
23636050. PMCID:
PMC3677792.
Article
66. Giskeødegård GF, Lundgren S, Sitter B, Fjøsne HE, Postma G, Buydens LM, et al. 2012; Lactate and glycine-potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers. NMR Biomed. 25:1271–9. DOI:
10.1002/nbm.2798. PMID:
22407957.
Article
67. Sitter B, Bathen TF, Singstad TE, Fjøsne HE, Lundgren S, Halgunset J, et al. 2010; Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR Biomed. 23:424–31. DOI:
10.1002/nbm.1478. PMID:
20101607.
Article
68. di Salvo ML, Contestabile R, Paiardini A, Maras B. 2013; Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: the heme connection. Med Hypotheses. 80:633–6. DOI:
10.1016/j.mehy.2013.02.008.
Article
72. Purwaha P, Gu F, Piyarathna DWB, Rajendiran T, Ravindran A, Omilian AR, et al. 2018; Unbiased lipidomic profiling of triple-negative breast cancer tissues reveals the association of sphingomyelin levels with patient disease-free survival. Metabolites. 8:41. DOI:
10.3390/metabo8030041. PMCID:
PMC6161031. PMID:
e28337a9714c471f8b98afc7bea72620.
Article
73. Sarkar S, Maceyka M, Hait NC, Paugh SW, Sankala H, Milstien S, et al. 2005; Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett. 579:5313–7. DOI:
10.1016/j.febslet.2005.08.055. PMID:
16194537.
Article
74. Vethakanraj HS, Babu TA, Sudarsanan GB, Duraisamy PK, Ashok Kumar S. 2015; Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines. Biochem Biophys Res Commun. 464:833–9. DOI:
10.1016/j.bbrc.2015.07.047. PMID:
26188095.
Article
75. Mukhopadhyay P, Ramanathan R, Takabe K. 2015; S1P promotes breast cancer progression by angiogenesis and lymphangiogenesis. Breast Cancer Manag. 4:241–4. DOI:
10.2217/bmt.15.20. PMID:
27293484. PMCID:
PMC4900461.
Article
76. Kennedy KM, Dewhirst MW. 2010; Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 6:127–48. DOI:
10.2217/fon.09.145. PMID:
20021214. PMCID:
PMC2819205.
Article
78. Terunuma A, Putluri N, Mishra P, Mathé EA, Dorsey TH, Yi M, et al. 2014; MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 124:398–412. DOI:
10.1172/JCI71180. PMID:
24316975.
Article
80. Seibold P, Vrieling A, Johnson TS, Buck K, Behrens S, Kaaks R, et al. 2014; Enterolactone concentrations and prognosis after postmenopausal breast cancer: assessment of effect modification and meta-analysis. Int J Cancer. 135:923–33. DOI:
10.1002/ijc.28729. PMID:
24436155.
Article
81. Jaskulski S, Jung AY, Behrens S, Johnson T, Kaaks R, Thöne K, et al. 2018; Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. Int J Cancer. 143:2698–708. DOI:
10.1002/ijc.31647. PMID:
29974464.
Article
82. Jaskulski S, Jung AY, Huebner M, Poschet G, Hell R, Hüsing A, et al. 2020; Prognostic associations of circulating phytoestrogens and biomarker changes in long-term survivors of postmenopausal breast cancer. Nutr Cancer. 72:1155–69. DOI:
10.1080/01635581.2019.1672762. PMID:
31617773.
Article
84. D'Amato NC, Rogers TJ, Gordon MA, Greene LI, Cochrane DR, Spoelstra NS, et al. 2015; A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res. 75:4651–64. DOI:
10.1158/0008-5472.CAN-15-2011. PMID:
26363006. PMCID:
PMC4631670.
85. Fan Y, Zhou X, Xia TS, Chen Z, Li J, Liu Q, et al. 2016; Human plasma metabolomics for identifying differential metabolites and predicting molecular subtypes of breast cancer. Oncotarget. 7:9925–38. DOI:
10.18632/oncotarget.7155. PMID:
26848530. PMCID:
PMC4891093.
Article
86. Jin Y, Fan S, Jiang W, Zhang J, Yang L, Xiao J, et al. 2023; Two effective models based on comprehensive lipidomics and metabolomics can distinguish BC versus HCs, and TNBC versus non-TNBC. Proteomics Clin Appl. 17:e2200042. DOI:
10.1002/prca.202200042. PMID:
36443927.
Article
90. Wang R, Zhao H, Zhang X, Zhao X, Song Z, Ouyang J. 2019; Metabolic discrimination of breast cancer subtypes at the single-cell level by multiple microextraction coupled with mass spectrometry. Anal Chem. 91:3667–74. DOI:
10.1021/acs.analchem.8b05739. PMID:
30702862.
Article
91. Baker PR, Wilton JC, Jones CE, Stenzel DJ, Watson N, Smith GJ. 1992; Bile acids influence the growth, oestrogen receptor and oestrogen-regulated proteins of MCF-7 human breast cancer cells. Br J Cancer. 65:566–72. DOI:
10.1038/bjc.1992.115. PMCID:
PMC1977566.
Article
93. Lin X, Xu R, Mao S, Zhang Y, Dai Y, Guo Q, et al. 2019; Metabolic biomarker signature for predicting the effect of neoadjuvant chemotherapy of breast cancer. Ann Transl Med. 7:670. DOI:
10.21037/atm.2019.10.34. PMID:
31930071. PMCID:
PMC6944618.
Article
95. Cardoso MR, Silva AAR, Talarico MCR, Sanches PHG, Sforça ML, Rocco SA, et al. 2022; Metabolomics by NMR combined with machine learning to predict neoadjuvant chemotherapy response for breast cancer. Cancers (Basel). 14:5055. DOI:
10.3390/cancers14205055. PMID:
36291837. PMCID:
PMC9600495.
Article
96. Silva AAR, Cardoso MR, Oliveira DC, Godoy P, Talarico MCR, Gutiérrez JM, et al. 2024; Plasma metabolome signatures to predict responsiveness to neoadjuvant chemotherapy in breast cancer. Cancers (Basel). 16:2473. DOI:
10.3390/cancers16132473. PMID:
39001535. PMCID:
PMC11240312.
Article
97. Bronte V, Zanovello P. 2005; Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 5:641–54. DOI:
10.1038/nri1668. PMID:
16056256.
Article
98. Tian Z, Rao Q, He Z, Zhao W, Chen L, Liu J, et al. 2023; Effect of
1H-NMR serum lipoproteins on immunotherapy response in advanced triple-negative breast cancer patients. Cancer Sci. 114:3924–34. DOI:
10.1111/cas.15937. PMID:
37640025. PMCID:
PMC10551590.
101. Taborda Ribas H, Sogayar MC, Dolga AM, Winnischofer SMB, Trombetta-Lima M. 2024; Lipid profile in breast cancer: from signaling pathways to treatment strategies. Biochimie. 219:118–29. DOI:
10.1016/j.biochi.2023.11.008. PMID:
37993054.
Article
103. van Asten JJ, Vettukattil R, Buckle T, Rottenberg S, van Leeuwen F, Bathen TF, et al. 2015; Increased levels of choline metabolites are an early marker of docetaxel treatment response in BRCA1-mutated mouse mammary tumors: an assessment by ex vivo proton magnetic resonance spectroscopy. J Transl Med. 13:114. DOI:
10.1186/s12967-015-0458-4. PMID:
25890200. PMCID:
PMC4404119.
Article