Korean J Physiol Pharmacol.  2025 May;29(3):359-372. 10.4196/kjpp.24.322.

Identification of telomere-related diagnostic markers in osteoarthritis based on bioinformatics analysis and machine learning

Affiliations
  • 1Department of Orthopaedics, Jinhua Wenrong Hospital, Jinhua 321000, Zhejiang, China

Abstract

Osteoarthritis (OA) is one of the most prevalent joint disorders, with aging considered a primary, irreversible factor contributing to its progression. Telomere-related cellular senescence may be a crucial factor influencing the OA process, yet biomarkers for OA based on telomere-related genes have not been clearly identified. The datasets GSE51588, GSE12021, and GSE55457 were retrieved from the Gene Expression Omnibus database. Initially, R software was utilized to identify differentially expressed genes between OA and normal samples. Subsequently, differentially expressed telomere-related genes (DETMRGs) were obtained, and their functional enrichment was analyzed. Feature genes for OA diagnosis were selected from DETMRGs using a combination of least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and Random Forest algorithms. The diagnostic value of these feature genes was then validated through receiver operating characteristic (ROC) curves and decision curve analysis. Additionally, CIBERSORT and xCell were employed to assess the infiltration of immune cells in OA tissues. Finally, potential drugs targeting candidate genes were predicted. Three telomererelated genes, PGD, SLC7A5, and TKT, have been identified as biomarkers for OA diagnosis and were confirmed through ROC diagnostic tests. The immune infiltration of mast cells, neutrophils, common lymphoid precursors, and eosinophils associated with PGD, SLC7A5, and TKT was reduced. Recognizing telomere-related genes PGD, SLC7A5, and TKT as potential diagnostic biomarkers for OA is significant, as it offers valuable insights into the role of telomere-related genes in OA. This discovery also provides valuable information for the diagnosis and treatment of OA.

Keyword

Biomarkers; Immune system; Osteoarthritis; Telomere shortening

Figure

  • Fig. 1 Identification and PPI analysis of DETMRGs. (A) DEGs volcano plot, yellow nodes indicate upregulated DEGs, bule nodes indicate downregulated DEGs, and grey nodes indicate no significant. (B) Heatmap of 20 DEGs, the left part represents normal samples, the right part represents OA samples, yellow represents upregulation and bule represents downregulation. (C) UpSetR plots depicts the number of unique and shared genes between DEGs and TMRGs. (D) Interaction map of 25 DETMRGs PPI network. The node size indicates the clustering coefficient; a larger node represents a larger clustering coefficient. The node color indicates the degree; a higher degree represents a greater connection. PPI, protein and protein interaction; DETMRGs, differentially expressed telomere related genes; DEGs, differentially expressed genes; OA, osteoarthritis; TMRGs, telomere related genes.

  • Fig. 2 DETMRG functional enrichment analysis. (A) Correlation matrix of 34 DETMRGs. (B) CeRNA network of DETMRGs, brown represents mRNA, pink represents miRNA and purple represents lncRNA. (C) KEGG enrichment analysis of DETMRGs. The bubble plots depict the seven most significant pathway enrichment, the bubble size represents the number of DETMRGs, a larger circle indicates a greater number of DETMRGs. The color represents the p-value, a redder color indicates a smaller p-value. (D) GO enrichment analysis of DETMRGs, yellow bar indicates biological process, blue bar indicates cellular component and green bar indicates molecular function. DETMRGs, differentially expressed telomere related genes; ceRNA, competing endogenous RNA; KEGG, Kyoto encyclopedia of genes and genomes; GO, gene ontology.

  • Fig. 3 Screening of feature genes from DETMRGs for OA diagnosis. (A) Coefficient distribution map for logarithmic (λ) sequences in LASSO regression model. (B) Coefficient spectrum of LASSO Cox analysis. (C) Feature gene expression validation by SVM-RFE selection. (D) RandomForest residual distribution map. The X-axis represents the number of trees, and the Y-axis represents the error rate. (E) RandomForest feature importance map of DETMRGs. (F) Venn diagram shows 3 common genes shared by LASSO, SVM-RFE, and RandomForest methods. DETMRGs, differentially expressed telomere related genes; OA, osteoarthritis; LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector machine-recursive feature elimination.

  • Fig. 4 Diagnostic value and expression pattern of the feature genes. (A) Receiver operating characteristic (ROC) curve of PGD, SLC7A5, and TKT for OA diagnosis in training set GSE51588. (B) Expression of PGD, SLC7A5, and TKT between OA cases and normal control in training set GSE51588. (C) ROC curve of PGD, SLC7A5, and TKT for OA diagnosis in validation set GSE12021+GSE55457. (D) Expression of PGD, SLC7A5, and TKT between OA cases and normal control in validation set GSE12021+GSE55457. (E) Nomogram based on PGD, SLC7A5, and TKT. (F) ROC curve of PGD, SLC7A5, TKT and diagnostic model. (G) DCA curve of PGD, SLC7A5, TKT and diagnostic model. A further the end point from the grey line, a higher accuracy. (H) Calibration curve, the X-axis represents nomogram-predicted probability of disease risk, and the Y-axis the proportion of represents actual disease, a closer line to the ideal dashed a more reliable result. OA, osteoarthritis; DCA, decision curve analysis. ***p < 0.001, ****p < 0.0001.

  • Fig. 5 Immune cells infiltration in osteoarthritis (OA) by CIBERSORT algorithm. (A) Relative abundance of 22 immune cells infiltration in OA and normal samples. (B) Comparison of 22 immune cells infiltration between OA and normal control, green represents normal samples and orange represent OA samples. (C) Correlation matrix of 20 immune cells, red represents positive correlation and bule represents negative correlation. (D) Correlation of PGD, SLC7A5, and TKT to immune cells infiltration in OA, red represents positive correlation and green represents negative correlation. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

  • Fig. 6 Gene set enrichment analysis (GSEA) of feature genes and prediction of potential drug target. (A) GSEA of TKT for top 5 pathways. (B) GSEA of SLC7A5 for top 5 pathways. (C) GSEA of PGD for top 5 pathways. (D) Prediction of potential drugs for PGD and SLC7A5. Ellipses represent genes, V-shaped represents drugs, and darker purple indicates higher interaction scores.

  • Fig. 7 Validation of RT-qPCR in normal (CP-H107) and OA (402OAK-05a) human chondrocyte cells. Comparative mRNA expression levels of PGD, SLC7A5, and TKT in CP-H107 and 402OAK-05a cell lines (n = 3). OA, osteoarthritis. *p < 0.05.


Reference

1. Tong L, Yu H, Huang X, Shen J, Xiao G, Chen L, Wang H, Xing L, Chen D. 2022; Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res. 10:60. DOI: 10.1038/s41413-022-00226-9. PMID: 36127328. PMCID: PMC9489702.
Article
2. Long H, Liu Q, Yin H, Wang K, Diao N, Zhang Y, Lin J, Guo A. 2022; Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019. Arthritis Rheumatol. 74:1172–1183. DOI: 10.1002/art.42089. PMID: 35233975. PMCID: PMC9543105.
Article
3. Liu Y, Zhang Z, Li T, Xu H, Zhang H. 2022; Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Res Ther. 24:174. DOI: 10.1186/s13075-022-02859-x. PMID: 35869508. PMCID: PMC9306208.
Article
4. O'Brien MS, McDougall JJ. 2019; Age and frailty as risk factors for the development of osteoarthritis. Mech Ageing Dev. 180:21–28. DOI: 10.1016/j.mad.2019.03.003. PMID: 30898635.
5. Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. 2021; Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 22:75–95. DOI: 10.1038/s41580-020-00314-w. PMID: 33328614. PMCID: PMC8344376.
Article
6. Rossiello F, Jurk D, Passos JF, d'Adda di Fagagna F. 2022; Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol. 24:135–147. DOI: 10.1038/s41556-022-00842-x. PMID: 35165420. PMCID: PMC8985209.
Article
7. Chen L, Zhao Y, Liu F, Chen H, Tan T, Yao P, Tang Y. 2022; Biological aging mediates the associations between urinary metals and osteoarthritis among U.S. adults. BMC Med. 20:207. DOI: 10.1186/s12916-022-02403-3. PMID: 35710548. PMCID: PMC9205020.
Article
8. Guillén R, Otero F, Mosquera A, Vázquez-Mosquera M, Rego-Pérez I, Blanco FJ, Fernández JL. 2021; Association of accelerated dynamics of telomere sequence loss in peripheral blood leukocytes with incident knee osteoarthritis in Osteoarthritis Initiative cohort. Sci Rep. 11:15914. DOI: 10.1038/s41598-021-95326-7. PMID: 34354128. PMCID: PMC8342605.
Article
9. Kuszel L, Trzeciak T, Begier-Krasinska B, Richter M, Li J, Czarny-Ratajczak M. 2024; Sex-specific differences in telomere length of patients with primary knee osteoarthritis. J Cell Mol Med. 28:e18107. DOI: 10.1111/jcmm.18107. PMID: 38235989. PMCID: PMC10844687.
Article
10. Lou C, Deng A, Zheng H, Sun G, Zhao H, Li A, Liu Q, Li Y, Lv Z. 2020; Pinitol suppresses TNF-α-induced chondrocyte senescence. Cytokine. 130:155047. DOI: 10.1016/j.cyto.2020.155047. PMID: 32200264.
Article
11. Cornelis FMF, de Roover A, Storms L, Hens A, Lories RJ, Monteagudo S. 2019; Increased susceptibility to develop spontaneous and post-traumatic osteoarthritis in Dot1l-deficient mice. Osteoarthritis Cartilage. 27:513–525. DOI: 10.1016/j.joca.2018.11.008. PMID: 30513362.
Article
12. Han X, Yan Z, Fan K, Guan X, Hu B, Li X, Ou Y, Cui B, An L, Zhang Y, Gong J. 2023; The combined signatures of telomere and immune cell landscape provide a prognostic and therapeutic biomarker in glioma. Front Immunol. 14:1220100. DOI: 10.3389/fimmu.2023.1220100. PMID: 37662954. PMCID: PMC10470026.
Article
13. The Gene Ontology Consortium. 2019; The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47:D330–D338. DOI: 10.1093/nar/gky1055. PMID: 30395331. PMCID: PMC6323945.
14. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017; KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45:D353–D361. DOI: 10.1093/nar/gkw1092. PMID: 27899662. PMCID: PMC5210567.
Article
15. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, Bork P, Jensen LJ, von Mering C. 2023; The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51:D638–D646. DOI: 10.1093/nar/gkac1000. PMID: 36370105. PMCID: PMC9825434.
Article
16. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003; Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. DOI: 10.1101/gr.1239303. PMID: 14597658. PMCID: PMC403769.
Article
17. Ebata T, Terkawi MA, Kitahara K, Yokota S, Shiota J, Nishida Y, Matsumae G, Alhasan H, Hamasaki M, Hontani K, Shimizu T, Takahashi D, Endo T, Onodera T, Kadoya K, Iwasaki N. 2023; Noncanonical pyroptosis triggered by macrophage-derived extracellular vesicles in chondrocytes leading to cartilage catabolism in osteoarthritis. Arthritis Rheumatol. 75:1358–1369. DOI: 10.1002/art.42505. PMID: 36924130.
Article
18. Yang J, Hu S, Bian Y, Yao J, Wang D, Liu X, Guo Z, Zhang S, Peng L. 2022; Targeting cell death: pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Dev Biol. 9:789948. DOI: 10.3389/fcell.2021.789948. PMID: 35118075. PMCID: PMC8804296.
Article
19. Guo Z, Lin J, Sun K, Guo J, Yao X, Wang G, Hou L, Xu J, Guo J, Guo F. 2022; Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway. Front Pharmacol. 13:791376. Erratum in: Front Pharmacol. 2023;14:1199951. DOI: 10.3389/fphar.2022.791376. PMID: 35359876. PMCID: PMC8964096.
Article
20. Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L, Wang X. 2023; The role of autophagy in bone metabolism and clinical significance. Autophagy. 19:2409–2427. DOI: 10.1080/15548627.2023.2186112. PMID: 36858962. PMCID: PMC10392742.
Article
21. Chen X, Gong W, Shao X, Shi T, Zhang L, Dong J, Shi Y, Shen S, Qin J, Jiang Q, Guo B. 2022; METTL3-mediated m6A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression. Ann Rheum Dis. 81:87–99. DOI: 10.1136/annrheumdis-2021-221091. PMID: 34706873.
Article
22. Xu K, He Y, Moqbel SAA, Zhou X, Wu L, Bao J. 2021; SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway. Int J Biol Macromol. 175:351–360. DOI: 10.1016/j.ijbiomac.2021.02.029. PMID: 33556400.
Article
23. Shen B, Wang Y, Cheng J, Peng Y, Zhang Q, Li Z, Zhao L, Deng X, Feng H. 2023; Pterostilbene alleviated NAFLD via AMPK/mTOR signaling pathways and autophagy by promoting Nrf2. Phytomedicine. 109:154561. DOI: 10.1016/j.phymed.2022.154561. PMID: 36610156.
Article
24. Demirci Yildirim T, Sari İ. 2024; SAPHO syndrome: current clinical, diagnostic and treatment approaches. Rheumatol Int. 44:2301–2313. DOI: 10.1007/s00296-023-05491-3. PMID: 37889264.
Article
25. Mariano A, Bigioni I, Misiti F, Fattorini L, Scotto D'Abusco A, Rodio A. 2022; The nutraceuticals as modern key to achieve erythrocyte oxidative stress fighting in osteoarthritis. Curr Issues Mol Biol. 44:3481–3495. DOI: 10.3390/cimb44080240. PMID: 36005136. PMCID: PMC9406754.
Article
26. Wu X, Fan X, Crawford R, Xiao Y, Prasadam I. 2022; The metabolic landscape in osteoarthritis. Aging Dis. 13:1166–1182. DOI: 10.14336/AD.2021.1228. PMID: 35855332. PMCID: PMC9286923.
Article
27. Wu X, Liyanage C, Plan M, Stark T, McCubbin T, Barrero RA, Batra J, Crawford R, Xiao Y, Prasadam I. 2023; Dysregulated energy metabolism impairs chondrocyte function in osteoarthritis. Osteoarthritis Cartilage. 31:613–626. DOI: 10.1016/j.joca.2022.11.004. PMID: 36410637.
Article
28. Li HZ, Xu XH, Lin N, Wang DW, Lin YM, Su ZZ, Lu HD. 2020; Overexpression of miR-10a-5p facilitates the progression of osteoarthritis. Aging (Albany NY). 12:5948–5976. DOI: 10.18632/aging.102989. PMID: 32283545. PMCID: PMC7185093.
Article
29. Arra M, Swarnkar G, Ke K, Otero JE, Ying J, Duan X, Maruyama T, Rai MF, O'Keefe RJ, Mbalaviele G, Shen J, Abu-Amer Y. 2020; LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat Commun. 11:3427. DOI: 10.1038/s41467-020-17242-0. PMID: 32647171. PMCID: PMC7347613.
Article
30. Gao Y, Yan W, Sun L, Zhang X. 2024; PiRNA hsa_piR_019914 promoted chondrocyte anabolic metabolism by inhibiting LDHA-dependent ROS production. Cartilage. 15:303–314. DOI: 10.1177/19476035231181094. PMID: 37431854. PMCID: PMC11418426.
Article
31. Cao J, Sun X, Zhang X, Chen D. 2020; 6PGD upregulation is associated with chemo- and immuno-resistance of renal cell carcinoma via AMPK signaling-dependent NADPH-mediated metabolic reprograming. Am J Med Sci. 360:279–286. DOI: 10.1016/j.amjms.2020.06.014. PMID: 32829780.
Article
32. Wang L, Ye S, Qin J, Tang M, Dong MY, Fang J. 2023; Ferroptosis-related genes LPCAT3 and PGD are potential diagnostic biomarkers for osteoarthritis. J Orthop Surg Res. 18:699. DOI: 10.1186/s13018-023-04128-2. PMID: 37723556. PMCID: PMC10507893.
Article
33. Batsios G, Taglang C, Gillespie AM, Viswanath P. 2023; Imaging telomerase reverse transcriptase expression in oligodendrogliomas using hyperpolarized δ-[1-13C]-gluconolactone. Neurooncol Adv. 5:vdad092. DOI: 10.1093/noajnl/vdad092. PMID: 37600229. PMCID: PMC10433788.
Article
34. Jin L, Alesi GN, Kang S. 2016; Glutaminolysis as a target for cancer therapy. Oncogene. 35:3619–3625. DOI: 10.1038/onc.2015.447. PMID: 26592449. PMCID: PMC5225500.
Article
35. Xiao D, Zeng L, Yao K, Kong X, Wu G, Yin Y. 2016; The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids. 48:2067–2080. DOI: 10.1007/s00726-016-2254-8. PMID: 27161106.
Article
36. He B, Zhang N, Zhao R. 2016; Dexamethasone downregulates SLC7A5 expression and promotes cell cycle arrest, autophagy and apoptosis in BeWo cells. J Cell Physiol. 231:233–242. DOI: 10.1002/jcp.25076. PMID: 26094588.
Article
37. Malinowski D, Piotrowska K, Droździk M, Pawlik A. 2024; Solute carrier transporters in synovial membrane and Hoffa's pad of patients with rheumatoid arthritis. Arch Immunol Ther Exp (Warsz). 72:DOI: 10.2478/aite-2024-0014. PMID: 38932672.
Article
38. Li M, Zhao X, Yong H, Xu J, Qu P, Qiao S, Hou P, Li Z, Chu S, Zheng J, Bai J. 2022; Transketolase promotes colorectal cancer metastasis through regulating AKT phosphorylation. Cell Death Dis. 13:99. DOI: 10.1038/s41419-022-04575-5. PMID: 35110545. PMCID: PMC8810869.
Article
39. Zhao X, Younis S, Shi H, Hu S, Zia A, Wong HH, Elliott EE, Chang T, Bloom MS, Zhang W, Liu X, Lanz TV, Sharpe O, Love ZZ, Wang Q, Robinson WH. 2022; RNA-seq characterization of histamine-releasing mast cells as potential therapeutic target of osteoarthritis. Clin Immunol. 244:109117. DOI: 10.1016/j.clim.2022.109117. PMID: 36109004. PMCID: PMC10752578.
Article
40. Loucks A, Maerz T, Hankenson K, Moeser A, Colbath A. 2023; The multifaceted role of mast cells in joint inflammation and arthritis. Osteoarthritis Cartilage. 31:567–575. DOI: 10.1016/j.joca.2023.01.005. PMID: 36682447.
Article
41. Chaney S, Vergara R, Qiryaqoz Z, Suggs K, Akkouch A. 2022; The involvement of neutrophils in the pathophysiology and treatment of osteoarthritis. Biomedicines. 10:1604. DOI: 10.3390/biomedicines10071604. PMID: 35884909. PMCID: PMC9313259.
Article
42. Xu P, Crawford M, Way M, Godovac-Zimmermann J, Segal AW, Radulovic M. 2009; Subproteome analysis of the neutrophil cytoskeleton. Proteomics. 9:2037–2049. DOI: 10.1002/pmic.200800674. PMID: 19294702. PMCID: PMC4261606.
Article
43. Riyapa D, Rinchai D, Muangsombut V, Wuttinontananchai C, Toufiq M, Chaussabel D, Ato M, Blackwell JM, Korbsrisate S. 2019; Transketolase and vitamin B1 influence on ROS-dependent neutrophil extracellular traps (NETs) formation. PLoS One. 14:e0221016. DOI: 10.1371/journal.pone.0221016. PMID: 31415630. PMCID: PMC6695114.
Article
44. Blackburn WD. 1996; Management of osteoarthritis and rheumatoid arthritis: prospects and possibilities. Am J Med. 100:24S–30S. DOI: 10.1016/S0002-9343(97)89543-5. PMID: 8604723.
Article
45. Seibel MJ, Duncan A, Robins SP. 1989; Urinary hydroxy-pyridinium crosslinks provide indices of cartilage and bone involvement in arthritic diseases. J Rheumatol. 16:964–970.
46. Enteshari-Moghaddam A, Azami A, Isazadehfar K, Mohebbi H, Habibzadeh A, Jahanpanah P. 2019; Efficacy of duloxetine and gabapentin in pain reduction in patients with knee osteoarthritis. Clin Rheumatol. 38:2873–2880. DOI: 10.1007/s10067-019-04573-7. PMID: 31062253.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr