3. Liu T, Hong G, Cai W. 2021; A comparative study of effective atomic number calculations for dual-energy CT. Med Phys. 48:5908–5923. DOI:
10.1002/mp.15166. PMID:
34390593.
Article
4. Berger MJ, Hubbell JH. 1987. XCOM: photon cross sections on a personal computer. National Bureau of Standards. NBSIR 87-3597. DOI:
10.2172/6016002.
5. Hubbell JH, Seltzer SM. 1995. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. National Institute of Standards and Technology;Gaithersburg: Available from:
http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html. cited 2024 Nov 1. DOI:
10.6028/NIST.IR.5632.
6. Mayneord W. 1937; The significance of the roentgen. Acta Int Union Against Cancer. 2:271–282.
7. Hine GJ. 1952; The effective atomic numbers of materials for various gamma interactions. Phys Rev. 85:725–737.
8. Cho ZH, Tsai CM, Wilson G. 1975; Study of contrast and modulation mechanisms in X-ray/photon transverse axial transmission tomography. Phys Med Biol. 20:879–889. DOI:
10.1088/0031-9155/20/6/001. PMID:
1202507.
Article
9. Murty RC. 1965; Effective atomic numbers of heterogeneous materials. Nature. 207:398–399. DOI:
10.1038/207398a0.
Article
11. Alvarez RE, Macovski A. 1976; Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol. 21:733–744. DOI:
10.1088/0031-9155/21/5/002. PMID:
967922.
12. Kalender WA, Perman WH, Vetter JR, Klotz E. 1986; Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys. 13:334–339. DOI:
10.1118/1.595958. PMID:
3724693.
Article
13. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. 2007; Material differentiation by dual energy CT: initial experience. Eur Radiol. 17:1510–1517. DOI:
10.1007/s00330-006-0517-6. PMID:
17151859.
Article
15. Goodsitt MM, Christodoulou EG, Larson SC. 2011; Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med Phys. 38:2222–2232. DOI:
10.1118/1.3567509. PMID:
21626956.
Article
16. Landry G, Seco J, Gaudreault M, Verhaegen F. 2013; Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients. Phys Med Biol. 58:6851–6866. DOI:
10.1088/0031-9155/58/19/6851. PMID:
24025623.
Article
17. Saito M. 2012; Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship. Med Phys. 39:2021–2030. DOI:
10.1118/1.3694111. PMID:
22482623.
Article
18. Bazalova M, Carrier JF, Beaulieu L, Verhaegen F. 2008; Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations. Phys Med Biol. 53:2439–2456. DOI:
10.1088/0031-9155/53/9/015. PMID:
18421124.
Article
19. Rutherford RA, Pullan BR, Isherwood I. 1976; Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology. 11:15–21. DOI:
10.1007/BF00327253. PMID:
934468.
Article
20. Hünemohr N, Krauss B, Tremmel C, Ackermann B, Jäkel O, Greilich S. 2014; Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates. Phys Med Biol. 59:83–96. DOI:
10.1088/0031-9155/59/1/83. PMID:
24334601.
Article