Clin Transplant Res.  2025 Mar;39(1):12-23. 10.4285/ctr.24.0044.

Addressing glycan and hematological barriers in pig-to-nonhuman primate liver xenotransplantation: challenges and future directions

Affiliations
  • 1Department of Life Science, Gachon University, Seongnam, Korea

Abstract

Achieving long-term survival in pig-to-primate liver xenotransplantation has proven highly challenging due to significant hematological issues. This paper investigates the primary obstacles from a hematological perspective, focusing on coagulation disorders caused by molecular incompatibility between species. It also examines the mismatched glycan structures on the surfaces of platelets and red blood cells, which lead to sequestration and phagocytosis by recipient macrophages. These mismatches underscore the need for improved glycan and molecular compatibility to overcome im- munological and physiological barriers. Moreover, the liver's unique role in synthesizing a wide array of proteins, especially those involved in blood coagulation, introduces additional challenges of molecular incompatibility compared to other organs, such as the heart and kidneys. This study highlights the importance of addressing these challenges to improve the outcomes of liver xenotransplantation and suggests the necessity of strategies like glycan matching and the development of gene-edited pigs specifically tailored for liver transplantation.

Keyword

Xenotransplantation; Liver; Hematology; Coagulation; Platelet

Figure

  • Fig. 1 Proposed mechanisms of coagulation dysregulation in liver xenotransplantation. The molecular incompatibility of coagulation factors leads to excessive thrombin generation, fibrin formation, and consumptive coagulopathy. Activation of the coagulation cascade via tissue factor (TF) and Factor VIIa is highlighted, with regulatory pathways such as antithrombin (AT) and activated protein C (aPC)/protein S (PS) shown as inhibitory mechanisms. Platelet overactivation arises from interactions between recipient platelet glycoprotein Ib (GPIb) and pig von Willebrand factor (vWF), triggering platelet aggregation and fibrin adhesion. Additionally, platelet sequestration and phagocytosis by Kupffer cells and sinusoidal endothelial cells contribute to thrombocytopenia, exacerbating the imbalance between thrombosis and bleeding. These interactions underscore the multifaceted challenges in maintaining hemostatic balance in xenotransplantation settings. PBMC, peripheral blood mononuclear cell; TFPI, tissue factor pathway inhibitor.


Reference

1. Ekser B, Li P, Cooper DK. 2017; Xenotransplantation: past, present, and future. Curr Opin Organ Transplant. 22:513–21. DOI: 10.1097/MOT.0000000000000463. PMID: 28901971. PMCID: PMC5935127.
2. Ekser B, Cooper DK. 2010; Overcoming the barriers to xenotransplantation: prospects for the future. Expert Rev Clin Immunol. 6:219–30. DOI: 10.1586/eci.09.81. PMID: 20402385. PMCID: PMC2857338.
Article
3. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, et al. 2003; Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 299:411–4. DOI: 10.1126/science.1078942. PMID: 12493821. PMCID: PMC3154759.
Article
4. Kim SC, Mathews DV, Breeden CP, Higginbotham LB, Ladowski J, Martens G, et al. 2019; Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant. 19:2174–85. DOI: 10.1111/ajt.15329. PMID: 30821922. PMCID: PMC6658347.
Article
5. Mohiuddin MM, Goerlich CE, Singh AK, Zhang T, Tatarov I, Lewis B, et al. 2022; Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation. 29:e12744. DOI: 10.1111/xen.12744. PMID: 35357044. PMCID: PMC10325874.
Article
6. Lei T, Chen L, Wang K, Du S, Gonelle-Gispert C, Wang Y, et al. 2022; Genetic engineering of pigs for xenotransplantation to overcome immune rejection and physiological incompatibilities: the first clinical steps. Front Immunol. 13:1031185. DOI: 10.3389/fimmu.2022.1031185. PMID: 36561750. PMCID: PMC9766364.
Article
7. Mallapaty S, Kozlov M. 2024; First pig kidney transplant in a person: what it means for the future. Nature. 628:13–4. DOI: 10.1038/d41586-024-00879-y. PMID: 38519547.
Article
8. Mallapaty S. 2024; First pig liver transplanted into a person lasts for 10 days. Nature. 627:710–1. DOI: 10.1038/d41586-024-00853-8. PMID: 38514875.
Article
9. Shah JA, Patel MS, Elias N, Navarro-Alvarez N, Rosales I, Wilkinson RA, et al. 2017; Prolonged survival following pig-to-primate liver xenotransplantation utilizing exogenous coagulation factors and costimulation blockade. Am J Transplant. 17:2178–85. DOI: 10.1111/ajt.14341. PMID: 28489305. PMCID: PMC5519420.
Article
10. Calne RY, White HJ, Herbertson BM, Millard PR, Davis DR, Salaman JR, et al. 1968; Pig-to-baboon liver xenografts. Lancet. 1:1176–8. DOI: 10.1016/S0140-6736(68)91869-2. PMID: 4172293.
Article
11. Cross-Najafi AA, Lopez K, Isidan A, Park Y, Zhang W, Li P, et al. 2022; Current barriers to clinical liver xenotransplantation. Front Immunol. 13:827535. DOI: 10.3389/fimmu.2022.827535. PMID: 35281047. PMCID: PMC8904558.
Article
12. Powelson J, Cosimi AB, Austen W Jr, Bailen M, Colvin R, Gianello P, et al. 1994; Porcine-to-primate orthotopic liver transplantation. Transplant Proc. 26:1353–4.
13. Ramirez P, Chavez R, Majado M, Munitiz V, Muñoz A, Hernandez Q, et al. 2000; Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation. 70:989–98. DOI: 10.1097/00007890-200010150-00001. PMID: 11045632.
Article
14. Ekser B, Long C, Echeverri GJ, Hara H, Ezzelarab M, Lin CC, et al. 2010; Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance. Am J Transplant. 10:273–85. DOI: 10.1111/j.1600-6143.2009.02945.x. PMID: 20041862.
Article
15. Kim K, Schuetz C, Elias N, Veillette GR, Wamala I, Varma M, et al. 2012; Up to 9-day survival and control of thrombocytopenia following alpha1,3-galactosyl transferase knockout swine liver xenotransplantation in baboons. Xenotransplantation. 19:256–64. DOI: 10.1111/j.1399-3089.2012.00717.x. PMID: 22909139. PMCID: PMC3655405.
Article
16. Shah JA, Navarro-Alvarez N, DeFazio M, Rosales IA, Elias N, Yeh H, et al. 2016; A bridge to somewhere: 25-day survival after pig-to-baboon liver xenotransplantation. Ann Surg. 263:1069–71. DOI: 10.1097/SLA.0000000000001659. PMID: 26825261.
17. Navarro-Alvarez N, Shah JA, Zhu A, Ligocka J, Yeh H, Elias N, et al. 2016; The effects of exogenous administration of human coagulation factors following pig-to-baboon liver xenotransplantation. Am J Transplant. 16:1715–25. DOI: 10.1111/ajt.13647. PMID: 26613235. PMCID: PMC4874924.
Article
18. Huai G, Du J, Zhang Z, Gonelle-Gispert C, Zhang X, Dou K, et al. 2023; Gene-modified pigs as donors for liver xenotransplantation: how many modifications are needed? Eur J Transplant. 1:234–45. DOI: 10.57603/EJT-271.
Article
19. Lee KW, Park SS, Kim DS, Choi K, Shim J, Kim J, et al. 2023; Auxiliary liver xenotransplantation technique in a transgenic pig-to-non-human primate model: a surgical approach to prolong survival. Xenotransplantation. 30:e12814. DOI: 10.1111/xen.12814. PMID: 37493436.
Article
20. Ji H, Li X, Yue S, Li J, Chen H, Zhang Z, et al. 2015; Pig BMSCs transfected with human TFPI combat species incompatibility and regulate the human TF pathway in vitro and in a rodent model. Cell Physiol Biochem. 36:233–49. DOI: 10.1159/000374067. PMID: 25967963.
Article
21. Ramírez P, Montoya MJ, Ríos A, García Palenciano C, Majado M, Chávez R, et al. 2005; Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase). Transplant Proc. 37:4103–6. DOI: 10.1016/j.transproceed.2005.09.186. PMID: 16386637.
Article
22. Yeh H, Machaidze Z, Wamala I, Fraser JW, Navarro-Alvarez N, Kim K, et al. 2014; Increased transfusion-free survival following auxiliary pig liver xenotransplantation. Xenotransplantation. 21:454–64. DOI: 10.1111/xen.12111. PMID: 25130043.
Article
23. Zhang Z, Li X, Zhang H, Zhang X, Chen H, Pan D, et al. 2017; Cytokine profiles in Tibetan macaques following α-1,3-galactosyltransferase-knockout pig liver xenotransplantation. Xenotransplantation. 24:e12321. DOI: 10.1111/xen.12321. PMID: 28714241.
Article
24. Zhang X, Li X, Yang Z, Tao K, Wang Q, Dai B, et al. 2019; A review of pig liver xenotransplantation: current problems and recent progress. Xenotransplantation. 26:e12497. DOI: 10.1111/xen.12497. PMID: 30767272. PMCID: PMC6591103.
Article
25. Cowan PJ, Robson SC, d'Apice AJ. 2011; Controlling coagulation dysregulation in xenotransplantation. Curr Opin Organ Transplant. 16:214–21. DOI: 10.1097/MOT.0b013e3283446c65. PMID: 21415824. PMCID: PMC3094512.
Article
26. Ekser B, Lin CC, Long C, Echeverri GJ, Hara H, Ezzelarab M, et al. 2012; Potential factors influencing the development of thrombocytopenia and consumptive coagulopathy after genetically modified pig liver xenotransplantation. Transpl Int. 25:882–96. DOI: 10.1111/j.1432-2277.2012.01506.x. PMID: 22642260. PMCID: PMC3394909.
Article
27. Adams RL, Bird RJ. 2009; Review article: Coagulation cascade and therapeutics update: relevance to nephrology. Part 1: overview of coagulation, thrombophilias and history of anticoagulants. Nephrology (Carlton). 14:462–70. DOI: 10.1111/j.1440-1797.2009.01128.x. PMID: 19674315.
Article
28. Palta S, Saroa R, Palta A. 2014; Overview of the coagulation system. Indian J Anaesth. 58:515–23. DOI: 10.4103/0019-5049.144643. PMID: 25535411. PMCID: PMC4260295.
Article
29. Peng Q, Yeh H, Wei L, Enjyoj K, Machaidze Z, Csizmad E, et al. 2012; Mechanisms of xenogeneic baboon platelet aggregation and phagocytosis by porcine liver sinusoidal endothelial cells. PLoS One. 7:e47273. DOI: 10.1371/journal.pone.0047273. PMID: 23118867. PMCID: PMC3484054.
Article
30. Ramackers W, Klose J, Vondran FW, Schrem H, Kaltenborn A, Klempnauer J, et al. 2014; Species-specific regulation of fibrinogen synthesis with implications for porcine hepatocyte xenotransplantation. Xenotransplantation. 21:444–53. DOI: 10.1111/xen.12110. PMID: 25175927.
Article
31. Cooper DK, Dou KF, Tao KS, Yang ZX, Tector AJ, Ekser B. 2016; Pig liver xenotransplantation: a review of progress toward the clinic. Transplantation. 100:2039–47. DOI: 10.1097/TP.0000000000001319. PMID: 27428714. PMCID: PMC5030131.
32. Carvalho-Oliveira M, Valdivia E, Blasczyk R, Figueiredo C. 2021; Immunogenetics of xenotransplantation. Int J Immunogenet. 48:120–34. DOI: 10.1111/iji.12526. PMID: 33410582.
Article
33. Burlak C, Paris LL, Chihara RK, Sidner RA, Reyes LM, Downey SM, et al. 2010; The fate of human platelets perfused through the pig liver: implications for xenotransplantation. Xenotransplantation. 17:350–61. DOI: 10.1111/j.1399-3089.2010.00605.x. PMID: 20955292.
Article
34. Ekser B, Gridelli B, Veroux M, Cooper DK. 2011; Clinical pig liver xenotransplantation: how far do we have to go? Xenotransplantation. 18:158–67. DOI: 10.1111/j.1399-3089.2011.00642.x. PMID: 21696445.
Article
35. Chihara RK, Paris LL, Reyes LM, Sidner RA, Estrada JL, Downey SM, et al. 2011; Primary porcine Kupffer cell phagocytosis of human platelets involves the CD18 receptor. Transplantation. 92:739–44. DOI: 10.1097/TP.0b013e31822bc986. PMID: 21836538.
Article
36. Ekser B, Burlak C, Waldman JP, Lutz AJ, Paris LL, Veroux M, et al. 2012; Immunobiology of liver xenotransplantation. Expert Rev Clin Immunol. 8:621–34. DOI: 10.1586/eci.12.56. PMID: 23078060. PMCID: PMC3774271.
Article
37. Samy KP, Butler JR, Li P, Cooper DK, Ekser B. 2017; The role of costimulation blockade in solid organ and islet xenotransplantation. J Immunol Res. 2017:8415205. DOI: 10.1155/2017/8415205. PMID: 29159187. PMCID: PMC5660816.
Article
38. Paris LL, Chihara RK, Reyes LM, Sidner RA, Estrada JL, Downey SM, et al. 2011; ASGR1 expressed by porcine enriched liver sinusoidal endothelial cells mediates human platelet phagocytosis in vitro. Xenotransplantation. 18:245–51. DOI: 10.1111/j.1399-3089.2011.00639.x. PMID: 21848542.
Article
39. Paris LL, Estrada JL, Li P, Blankenship RL, Sidner RA, Reyes LM, et al. 2015; Reduced human platelet uptake by pig livers deficient in the asialoglycoprotein receptor 1 protein. Xenotransplantation. 22:203–10. DOI: 10.1111/xen.12164. PMID: 25728617. PMCID: PMC6017985.
Article
40. Bongoni AK, Kiermeir D, Denoyelle J, Jenni H, Burlak C, Seebach JD, et al. 2015; Porcine extrahepatic vascular endothelial asialoglycoprotein receptor 1 mediates xenogeneic platelet phagocytosis in vitro and in human-to-pig ex vivo xenoperfusion. Transplantation. 99:693–701. DOI: 10.1097/TP.0000000000000553. PMID: 25675194.
Article
41. Lin CC, Ezzelarab M, Shapiro R, Ekser B, Long C, Hara H, et al. 2010; Recipient tissue factor expression is associated with consumptive coagulopathy in pig-to-primate kidney xenotransplantation. Am J Transplant. 10:1556–68. DOI: 10.1111/j.1600-6143.2010.03147.x. PMID: 20642682. PMCID: PMC2914318.
Article
42. Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d'Apice AJ, Cowan PJ. 2008; Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant. 8:1101–12. DOI: 10.1111/j.1600-6143.2008.02210.x. PMID: 18444940.
Article
43. Kopp CW, Grey ST, Siegel JB, McShea A, Vetr H, Wrighton CJ, et al. 1998; Expression of human thrombomodulin cofactor activity in porcine endothelial cells. Transplantation. 66:244–51. DOI: 10.1097/00007890-199807270-00019. PMID: 9701273.
Article
44. Schulte Am Esch J 2nd, Robson SC, Knoefel WT, Hosch SB, Rogiers X. 2005; O-linked glycosylation and functional incompatibility of porcine von Willebrand factor for human platelet GPIb receptors. Xenotransplantation. 12:30–7. DOI: 10.1111/j.1399-3089.2004.00187.x. PMID: 15598271.
Article
45. Connolly MR, Kuravi K, Burdorf L, Sorrells L, Morrill B, Cimeno A, et al. 2021; Humanized von Willebrand factor reduces platelet sequestration in ex vivo and in vivo xenotransplant models. Xenotransplantation. 28:e12712. DOI: 10.1111/xen.12712. PMID: 34657336. PMCID: PMC10266522.
Article
46. Rees MA, Butler AJ, Davies HF, Bolton E, Wight DG, Skepper J, et al. 2002; Porcine livers perfused with human blood mount a graft-versus-"host" reaction. Transplantation. 73:1460–7. DOI: 10.1097/00007890-200205150-00016. PMID: 12023625.
Article
47. Rees MA, Butler AJ, Brons IG, Negus MC, Skepper JN, Friend PJ. 2005; Evidence of macrophage receptors capable of direct recognition of xenogeneic epitopes without opsonization. Xenotransplantation. 12:13–9. DOI: 10.1111/j.1399-3089.2004.00195.x. PMID: 15598269.
Article
48. Cimeno A, French BM, Powell JM, Phelps C, Ayares D, O'Neill NA, et al. 2018; Synthetic liver function is detectable in transgenic porcine livers perfused with human blood. Xenotransplantation. 25:e12361. DOI: 10.1111/xen.12361. PMID: 29067741. PMCID: PMC5809179.
Article
49. Burdorf L, Laird CT, Harris DG, Connolly MR, Habibabady Z, Redding E, et al. 2022; Pig-to-baboon lung xenotransplantation: extended survival with targeted genetic modifications and pharmacologic treatments. Am J Transplant. 22:28–45. DOI: 10.1111/ajt.16809. PMID: 34424601. PMCID: PMC10292947.
Article
50. Brock LG, Delputte PL, Waldman JP, Nauwynck HJ, Rees MA. 2012; Porcine sialoadhesin: a newly identified xenogeneic innate immune receptor. Am J Transplant. 12:3272–82. DOI: 10.1111/j.1600-6143.2012.04247.x. PMID: 22958948. PMCID: PMC3513673.
Article
51. Moazami N, Stern JM, Khalil K, Kim JI, Narula N, Mangiola M, et al. 2023; Pig-to-human heart xenotransplantation in two recently deceased human recipients. Nat Med. 29:1989–97. DOI: 10.1038/s41591-023-02471-9. PMID: 37488288.
Article
52. Mohiuddin MM, Singh AK, Scobie L, Goerlich CE, Grazioli A, Saharia K, et al. 2023; Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet. 402:397–410. DOI: 10.1016/S0140-6736(23)00775-4. PMID: 37393920.
Article
53. Yamamoto T, Iwase H, Patel D, Jagdale A, Ayares D, Anderson D, et al. 2020; Old world monkeys are less than ideal transplantation models for testing pig organs lacking three carbohydrate antigens (Triple-Knockout). Sci Rep. 10:9771. DOI: 10.1038/s41598-020-66311-3. PMID: 32555507. PMCID: PMC7300119.
Article
54. Ma D, Hirose T, Lassiter G, Sasaki H, Rosales I, Coe TM, et al. 2022; Kidney transplantation from triple-knockout pigs expressing multiple human proteins in cynomolgus macaques. Am J Transplant. 22:46–57. DOI: 10.1111/ajt.16780. PMID: 34331749. PMCID: PMC9291868.
Article
55. Eisenson D, Hisadome Y, Santillan M, Iwase H, Chen W, Shimizu A, et al. 2024; Consistent survival in consecutive cases of life-supporting porcine kidney xenotransplantation using 10GE source pigs. Nat Commun. 15:3361. DOI: 10.1038/s41467-024-47679-6. PMID: 38637524. PMCID: PMC11026402.
Article
56. Yeh P, Ezzelarab M, Bovin N, Hara H, Long C, Tomiyama K, et al. 2010; Investigation of potential carbohydrate antigen targets for human and baboon antibodies. Xenotransplantation. 17:197–206. DOI: 10.1111/j.1399-3089.2010.00579.x. PMID: 20636540.
Article
57. Burlak C, Bern M, Brito AE, Isailovic D, Wang ZY, Estrada JL, et al. 2013; N-linked glycan profiling of GGTA1/CMAH knockout pigs identifies new potential carbohydrate xenoantigens. Xenotransplantation. 20:277–91. DOI: 10.1111/xen.12047. PMID: 24033743. PMCID: PMC4593510.
Article
58. Nanno Y, Shajahan A, Sonon RN, Azadi P, Hering BJ, Burlak C. 2020; High-mannose type N-glycans with core fucosylation and complex-type N-glycans with terminal neuraminic acid residues are unique to porcine islets. PLoS One. 15:e0241249. DOI: 10.1371/journal.pone.0241249. PMID: 33170858. PMCID: PMC7654812.
Article
59. Choe HM, Luo ZB, Xuan MF, Quan BH, Kang JD, Oh MJ, et al. Sialylation and fucosylation changes of cytidine monophosphate-Nacetylneuraminic acid hydroxylase (CMAH) and glycoprotein, alpha1,3-galactosyltransferase (GGTA1) knockout pig erythrocyte membranes. BioRxiv [Preprint]. 2020. cited 2024 Oct 14. Available from: https://doi.org/10.1101/2020.08.07.240846. DOI: 10.1101/2020.08.07.240846.
Article
60. Diamond LE, Quinn CM, Martin MJ, Lawson J, Platt JL, Logan JS. 2001; A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation. 71:132–42. DOI: 10.1097/00007890-200101150-00021. PMID: 11211178.
Article
61. Cozzi E, White DJ. 1995; The generation of transgenic pigs as potential organ donors for humans. Nat Med. 1:964–6. DOI: 10.1038/nm0995-964. PMID: 7585226.
Article
62. Chen RH, Naficy S, Logan JS, Diamond LE, Adams DH. 1999; Hearts from transgenic pigs constructed with CD59/DAF genomic clones demonstrate improved survival in primates. Xenotransplantation. 6:194–200. DOI: 10.1034/j.1399-3089.1999.00017.x. PMID: 10503786.
Article
63. Mohiuddin MM, Singh AK, Corcoran PC, Thomas Iii ML, Clark T, Lewis BG, et al. 2016; Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 7:11138. DOI: 10.1038/ncomms11138. PMID: 27045379. PMCID: PMC4822024.
Article
64. Chan JL, Singh AK, Corcoran PC, Thomas ML, Lewis BG, Ayares DL, et al. 2017; Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model. Xenotransplantation. 24:e12330. DOI: 10.1111/xen.12330. PMID: 28940570.
Article
65. Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ, et al. 2012; Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol. 52:958–61. DOI: 10.1016/j.yjmcc.2012.01.002. PMID: 22269791. PMCID: PMC3327755.
Article
66. Tena A, Kurtz J, Leonard DA, Dobrinsky JR, Terlouw SL, Mtango N, et al. 2014; Transgenic expression of human CD47 markedly increases engraftment in a murine model of pig-to-human hematopoietic cell transplantation. Am J Transplant. 14:2713–22. DOI: 10.1111/ajt.12918. PMID: 25278264. PMCID: PMC4236244.
Article
67. Yan JJ, Koo TY, Lee HS, Lee WB, Kang B, Lee JG, et al. 2018; Role of human CD200 overexpression in pig-to-human xenogeneic immune response compared with human CD47 overexpression. Transplantation. 102:406–16. DOI: 10.1097/TP.0000000000001966. PMID: 28968355.
Article
68. Weiss EH, Lilienfeld BG, Müller S, Müller E, Herbach N, Kessler B, et al. 2009; HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation. 87:35–43. DOI: 10.1097/TP.0b013e318191c784. PMID: 19136889.
Article
69. Rao JS, Hosny N, Kumbha R, Naqvi RA, Singh A, Swanson Z, et al. 2021; HLA-G1+ expression in GGTA1KO pigs suppresses human and monkey anti-pig T, B and NK cell responses. Front Immunol. 12:730545. DOI: 10.3389/fimmu.2021.730545. PMID: 34566993. PMCID: PMC8459615.
Article
70. Wang HT, Maeda A, Sakai R, Lo PC, Takakura C, Jiaravuthisan P, et al. 2018; Human CD31 on porcine cells suppress xenogeneic neutrophil-mediated cytotoxicity via the inhibition of NETosis. Xenotransplantation. 25:e12396. DOI: 10.1111/xen.12396. PMID: 29635708.
Article
71. Buermann A, Petkov S, Petersen B, Hein R, Lucas- Hahn A, Baars W, et al. 2018; Pigs expressing the human inhibitory ligand PD-L1 (CD274) provide a new source of xenogeneic cells and tissues with low immunogenic properties. Xenotransplantation. 25:e12387. DOI: 10.1111/xen.12387. PMID: 29446180.
Article
72. Paris LL, Chihara RK, Sidner RA, Tector AJ, Burlak C. 2012; Differences in human and porcine platelet oligosaccharides may influence phagocytosis by liver sinusoidal cells in vitro. Xenotransplantation. 19:31–9. DOI: 10.1111/j.1399-3089.2011.00685.x. PMID: 22360751.
Article
73. Cui Y, Yamamoto T, Raza SS, Morsi M, Nguyen HQ, Ayares D, et al. 2020; Evidence for GTKO/β4GalNT2KO pigs as the preferred organ-source for old world nonhuman primates as a preclinical model of xenotransplantation. Transplant Direct. 6:e590. DOI: 10.1097/TXD.0000000000001038. PMID: 32766438. PMCID: PMC7382549.
Article
74. Tector AJ, Mosser M, Tector M, Bach JM. 2020; The possible role of anti-Neu5Gc as an obstacle in xenotransplantation. Front Immunol. 11:622. DOI: 10.3389/fimmu.2020.00622. PMID: 32351506. PMCID: PMC7174778.
Article
75. Feng H, Li T, Du J, Xia Q, Wang L, Chen S, et al. 2022; Both natural and induced anti-Sda antibodies play important roles in GTKO pig- to-rhesus monkey xenotransplantation. Front Immunol. 13:849711. DOI: 10.3389/fimmu.2022.849711. PMID: 35422817. PMCID: PMC9004458.
Article
Full Text Links
  • CTR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr