4. Kim SC, Mathews DV, Breeden CP, Higginbotham LB, Ladowski J, Martens G, et al. 2019; Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant. 19:2174–85. DOI:
10.1111/ajt.15329. PMID:
30821922. PMCID:
PMC6658347.
Article
5. Mohiuddin MM, Goerlich CE, Singh AK, Zhang T, Tatarov I, Lewis B, et al. 2022; Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation. 29:e12744. DOI:
10.1111/xen.12744. PMID:
35357044. PMCID:
PMC10325874.
Article
6. Lei T, Chen L, Wang K, Du S, Gonelle-Gispert C, Wang Y, et al. 2022; Genetic engineering of pigs for xenotransplantation to overcome immune rejection and physiological incompatibilities: the first clinical steps. Front Immunol. 13:1031185. DOI:
10.3389/fimmu.2022.1031185. PMID:
36561750. PMCID:
PMC9766364.
Article
9. Shah JA, Patel MS, Elias N, Navarro-Alvarez N, Rosales I, Wilkinson RA, et al. 2017; Prolonged survival following pig-to-primate liver xenotransplantation utilizing exogenous coagulation factors and costimulation blockade. Am J Transplant. 17:2178–85. DOI:
10.1111/ajt.14341. PMID:
28489305. PMCID:
PMC5519420.
Article
12. Powelson J, Cosimi AB, Austen W Jr, Bailen M, Colvin R, Gianello P, et al. 1994; Porcine-to-primate orthotopic liver transplantation. Transplant Proc. 26:1353–4.
13. Ramirez P, Chavez R, Majado M, Munitiz V, Muñoz A, Hernandez Q, et al. 2000; Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation. 70:989–98. DOI:
10.1097/00007890-200010150-00001. PMID:
11045632.
Article
14. Ekser B, Long C, Echeverri GJ, Hara H, Ezzelarab M, Lin CC, et al. 2010; Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance. Am J Transplant. 10:273–85. DOI:
10.1111/j.1600-6143.2009.02945.x. PMID:
20041862.
Article
15. Kim K, Schuetz C, Elias N, Veillette GR, Wamala I, Varma M, et al. 2012; Up to 9-day survival and control of thrombocytopenia following alpha1,3-galactosyl transferase knockout swine liver xenotransplantation in baboons. Xenotransplantation. 19:256–64. DOI:
10.1111/j.1399-3089.2012.00717.x. PMID:
22909139. PMCID:
PMC3655405.
Article
16. Shah JA, Navarro-Alvarez N, DeFazio M, Rosales IA, Elias N, Yeh H, et al. 2016; A bridge to somewhere: 25-day survival after pig-to-baboon liver xenotransplantation. Ann Surg. 263:1069–71. DOI:
10.1097/SLA.0000000000001659. PMID:
26825261.
17. Navarro-Alvarez N, Shah JA, Zhu A, Ligocka J, Yeh H, Elias N, et al. 2016; The effects of exogenous administration of human coagulation factors following pig-to-baboon liver xenotransplantation. Am J Transplant. 16:1715–25. DOI:
10.1111/ajt.13647. PMID:
26613235. PMCID:
PMC4874924.
Article
18. Huai G, Du J, Zhang Z, Gonelle-Gispert C, Zhang X, Dou K, et al. 2023; Gene-modified pigs as donors for liver xenotransplantation: how many modifications are needed? Eur J Transplant. 1:234–45. DOI:
10.57603/EJT-271.
Article
19. Lee KW, Park SS, Kim DS, Choi K, Shim J, Kim J, et al. 2023; Auxiliary liver xenotransplantation technique in a transgenic pig-to-non-human primate model: a surgical approach to prolong survival. Xenotransplantation. 30:e12814. DOI:
10.1111/xen.12814. PMID:
37493436.
Article
20. Ji H, Li X, Yue S, Li J, Chen H, Zhang Z, et al. 2015; Pig BMSCs transfected with human TFPI combat species incompatibility and regulate the human TF pathway in vitro and in a rodent model. Cell Physiol Biochem. 36:233–49. DOI:
10.1159/000374067. PMID:
25967963.
Article
21. Ramírez P, Montoya MJ, Ríos A, García Palenciano C, Majado M, Chávez R, et al. 2005; Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase). Transplant Proc. 37:4103–6. DOI:
10.1016/j.transproceed.2005.09.186. PMID:
16386637.
Article
22. Yeh H, Machaidze Z, Wamala I, Fraser JW, Navarro-Alvarez N, Kim K, et al. 2014; Increased transfusion-free survival following auxiliary pig liver xenotransplantation. Xenotransplantation. 21:454–64. DOI:
10.1111/xen.12111. PMID:
25130043.
Article
23. Zhang Z, Li X, Zhang H, Zhang X, Chen H, Pan D, et al. 2017; Cytokine profiles in Tibetan macaques following α-1,3-galactosyltransferase-knockout pig liver xenotransplantation. Xenotransplantation. 24:e12321. DOI:
10.1111/xen.12321. PMID:
28714241.
Article
24. Zhang X, Li X, Yang Z, Tao K, Wang Q, Dai B, et al. 2019; A review of pig liver xenotransplantation: current problems and recent progress. Xenotransplantation. 26:e12497. DOI:
10.1111/xen.12497. PMID:
30767272. PMCID:
PMC6591103.
Article
26. Ekser B, Lin CC, Long C, Echeverri GJ, Hara H, Ezzelarab M, et al. 2012; Potential factors influencing the development of thrombocytopenia and consumptive coagulopathy after genetically modified pig liver xenotransplantation. Transpl Int. 25:882–96. DOI:
10.1111/j.1432-2277.2012.01506.x. PMID:
22642260. PMCID:
PMC3394909.
Article
27. Adams RL, Bird RJ. 2009; Review article: Coagulation cascade and therapeutics update: relevance to nephrology. Part 1: overview of coagulation, thrombophilias and history of anticoagulants. Nephrology (Carlton). 14:462–70. DOI:
10.1111/j.1440-1797.2009.01128.x. PMID:
19674315.
Article
29. Peng Q, Yeh H, Wei L, Enjyoj K, Machaidze Z, Csizmad E, et al. 2012; Mechanisms of xenogeneic baboon platelet aggregation and phagocytosis by porcine liver sinusoidal endothelial cells. PLoS One. 7:e47273. DOI:
10.1371/journal.pone.0047273. PMID:
23118867. PMCID:
PMC3484054.
Article
30. Ramackers W, Klose J, Vondran FW, Schrem H, Kaltenborn A, Klempnauer J, et al. 2014; Species-specific regulation of fibrinogen synthesis with implications for porcine hepatocyte xenotransplantation. Xenotransplantation. 21:444–53. DOI:
10.1111/xen.12110. PMID:
25175927.
Article
31. Cooper DK, Dou KF, Tao KS, Yang ZX, Tector AJ, Ekser B. 2016; Pig liver xenotransplantation: a review of progress toward the clinic. Transplantation. 100:2039–47. DOI:
10.1097/TP.0000000000001319. PMID:
27428714. PMCID:
PMC5030131.
32. Carvalho-Oliveira M, Valdivia E, Blasczyk R, Figueiredo C. 2021; Immunogenetics of xenotransplantation. Int J Immunogenet. 48:120–34. DOI:
10.1111/iji.12526. PMID:
33410582.
Article
33. Burlak C, Paris LL, Chihara RK, Sidner RA, Reyes LM, Downey SM, et al. 2010; The fate of human platelets perfused through the pig liver: implications for xenotransplantation. Xenotransplantation. 17:350–61. DOI:
10.1111/j.1399-3089.2010.00605.x. PMID:
20955292.
Article
35. Chihara RK, Paris LL, Reyes LM, Sidner RA, Estrada JL, Downey SM, et al. 2011; Primary porcine Kupffer cell phagocytosis of human platelets involves the CD18 receptor. Transplantation. 92:739–44. DOI:
10.1097/TP.0b013e31822bc986. PMID:
21836538.
Article
36. Ekser B, Burlak C, Waldman JP, Lutz AJ, Paris LL, Veroux M, et al. 2012; Immunobiology of liver xenotransplantation. Expert Rev Clin Immunol. 8:621–34. DOI:
10.1586/eci.12.56. PMID:
23078060. PMCID:
PMC3774271.
Article
37. Samy KP, Butler JR, Li P, Cooper DK, Ekser B. 2017; The role of costimulation blockade in solid organ and islet xenotransplantation. J Immunol Res. 2017:8415205. DOI:
10.1155/2017/8415205. PMID:
29159187. PMCID:
PMC5660816.
Article
38. Paris LL, Chihara RK, Reyes LM, Sidner RA, Estrada JL, Downey SM, et al. 2011; ASGR1 expressed by porcine enriched liver sinusoidal endothelial cells mediates human platelet phagocytosis in vitro. Xenotransplantation. 18:245–51. DOI:
10.1111/j.1399-3089.2011.00639.x. PMID:
21848542.
Article
39. Paris LL, Estrada JL, Li P, Blankenship RL, Sidner RA, Reyes LM, et al. 2015; Reduced human platelet uptake by pig livers deficient in the asialoglycoprotein receptor 1 protein. Xenotransplantation. 22:203–10. DOI:
10.1111/xen.12164. PMID:
25728617. PMCID:
PMC6017985.
Article
40. Bongoni AK, Kiermeir D, Denoyelle J, Jenni H, Burlak C, Seebach JD, et al. 2015; Porcine extrahepatic vascular endothelial asialoglycoprotein receptor 1 mediates xenogeneic platelet phagocytosis in vitro and in human-to-pig ex vivo xenoperfusion. Transplantation. 99:693–701. DOI:
10.1097/TP.0000000000000553. PMID:
25675194.
Article
41. Lin CC, Ezzelarab M, Shapiro R, Ekser B, Long C, Hara H, et al. 2010; Recipient tissue factor expression is associated with consumptive coagulopathy in pig-to-primate kidney xenotransplantation. Am J Transplant. 10:1556–68. DOI:
10.1111/j.1600-6143.2010.03147.x. PMID:
20642682. PMCID:
PMC2914318.
Article
42. Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d'Apice AJ, Cowan PJ. 2008; Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant. 8:1101–12. DOI:
10.1111/j.1600-6143.2008.02210.x. PMID:
18444940.
Article
43. Kopp CW, Grey ST, Siegel JB, McShea A, Vetr H, Wrighton CJ, et al. 1998; Expression of human thrombomodulin cofactor activity in porcine endothelial cells. Transplantation. 66:244–51. DOI:
10.1097/00007890-199807270-00019. PMID:
9701273.
Article
44. Schulte Am Esch J 2nd, Robson SC, Knoefel WT, Hosch SB, Rogiers X. 2005; O-linked glycosylation and functional incompatibility of porcine von Willebrand factor for human platelet GPIb receptors. Xenotransplantation. 12:30–7. DOI:
10.1111/j.1399-3089.2004.00187.x. PMID:
15598271.
Article
45. Connolly MR, Kuravi K, Burdorf L, Sorrells L, Morrill B, Cimeno A, et al. 2021; Humanized von Willebrand factor reduces platelet sequestration in ex vivo and in vivo xenotransplant models. Xenotransplantation. 28:e12712. DOI:
10.1111/xen.12712. PMID:
34657336. PMCID:
PMC10266522.
Article
46. Rees MA, Butler AJ, Davies HF, Bolton E, Wight DG, Skepper J, et al. 2002; Porcine livers perfused with human blood mount a graft-versus-"host" reaction. Transplantation. 73:1460–7. DOI:
10.1097/00007890-200205150-00016. PMID:
12023625.
Article
47. Rees MA, Butler AJ, Brons IG, Negus MC, Skepper JN, Friend PJ. 2005; Evidence of macrophage receptors capable of direct recognition of xenogeneic epitopes without opsonization. Xenotransplantation. 12:13–9. DOI:
10.1111/j.1399-3089.2004.00195.x. PMID:
15598269.
Article
48. Cimeno A, French BM, Powell JM, Phelps C, Ayares D, O'Neill NA, et al. 2018; Synthetic liver function is detectable in transgenic porcine livers perfused with human blood. Xenotransplantation. 25:e12361. DOI:
10.1111/xen.12361. PMID:
29067741. PMCID:
PMC5809179.
Article
49. Burdorf L, Laird CT, Harris DG, Connolly MR, Habibabady Z, Redding E, et al. 2022; Pig-to-baboon lung xenotransplantation: extended survival with targeted genetic modifications and pharmacologic treatments. Am J Transplant. 22:28–45. DOI:
10.1111/ajt.16809. PMID:
34424601. PMCID:
PMC10292947.
Article
51. Moazami N, Stern JM, Khalil K, Kim JI, Narula N, Mangiola M, et al. 2023; Pig-to-human heart xenotransplantation in two recently deceased human recipients. Nat Med. 29:1989–97. DOI:
10.1038/s41591-023-02471-9. PMID:
37488288.
Article
52. Mohiuddin MM, Singh AK, Scobie L, Goerlich CE, Grazioli A, Saharia K, et al. 2023; Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet. 402:397–410. DOI:
10.1016/S0140-6736(23)00775-4. PMID:
37393920.
Article
53. Yamamoto T, Iwase H, Patel D, Jagdale A, Ayares D, Anderson D, et al. 2020; Old world monkeys are less than ideal transplantation models for testing pig organs lacking three carbohydrate antigens (Triple-Knockout). Sci Rep. 10:9771. DOI:
10.1038/s41598-020-66311-3. PMID:
32555507. PMCID:
PMC7300119.
Article
54. Ma D, Hirose T, Lassiter G, Sasaki H, Rosales I, Coe TM, et al. 2022; Kidney transplantation from triple-knockout pigs expressing multiple human proteins in cynomolgus macaques. Am J Transplant. 22:46–57. DOI:
10.1111/ajt.16780. PMID:
34331749. PMCID:
PMC9291868.
Article
55. Eisenson D, Hisadome Y, Santillan M, Iwase H, Chen W, Shimizu A, et al. 2024; Consistent survival in consecutive cases of life-supporting porcine kidney xenotransplantation using 10GE source pigs. Nat Commun. 15:3361. DOI:
10.1038/s41467-024-47679-6. PMID:
38637524. PMCID:
PMC11026402.
Article
56. Yeh P, Ezzelarab M, Bovin N, Hara H, Long C, Tomiyama K, et al. 2010; Investigation of potential carbohydrate antigen targets for human and baboon antibodies. Xenotransplantation. 17:197–206. DOI:
10.1111/j.1399-3089.2010.00579.x. PMID:
20636540.
Article
57. Burlak C, Bern M, Brito AE, Isailovic D, Wang ZY, Estrada JL, et al. 2013; N-linked glycan profiling of GGTA1/CMAH knockout pigs identifies new potential carbohydrate xenoantigens. Xenotransplantation. 20:277–91. DOI:
10.1111/xen.12047. PMID:
24033743. PMCID:
PMC4593510.
Article
58. Nanno Y, Shajahan A, Sonon RN, Azadi P, Hering BJ, Burlak C. 2020; High-mannose type N-glycans with core fucosylation and complex-type N-glycans with terminal neuraminic acid residues are unique to porcine islets. PLoS One. 15:e0241249. DOI:
10.1371/journal.pone.0241249. PMID:
33170858. PMCID:
PMC7654812.
Article
59. Choe HM, Luo ZB, Xuan MF, Quan BH, Kang JD, Oh MJ, et al. Sialylation and fucosylation changes of cytidine monophosphate-Nacetylneuraminic acid hydroxylase (CMAH) and glycoprotein, alpha1,3-galactosyltransferase (GGTA1) knockout pig erythrocyte membranes. BioRxiv [Preprint]. 2020. cited 2024 Oct 14. Available from:
https://doi.org/10.1101/2020.08.07.240846. DOI:
10.1101/2020.08.07.240846.
Article
60. Diamond LE, Quinn CM, Martin MJ, Lawson J, Platt JL, Logan JS. 2001; A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation. 71:132–42. DOI:
10.1097/00007890-200101150-00021. PMID:
11211178.
Article
61. Cozzi E, White DJ. 1995; The generation of transgenic pigs as potential organ donors for humans. Nat Med. 1:964–6. DOI:
10.1038/nm0995-964. PMID:
7585226.
Article
62. Chen RH, Naficy S, Logan JS, Diamond LE, Adams DH. 1999; Hearts from transgenic pigs constructed with CD59/DAF genomic clones demonstrate improved survival in primates. Xenotransplantation. 6:194–200. DOI:
10.1034/j.1399-3089.1999.00017.x. PMID:
10503786.
Article
63. Mohiuddin MM, Singh AK, Corcoran PC, Thomas Iii ML, Clark T, Lewis BG, et al. 2016; Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 7:11138. DOI:
10.1038/ncomms11138. PMID:
27045379. PMCID:
PMC4822024.
Article
64. Chan JL, Singh AK, Corcoran PC, Thomas ML, Lewis BG, Ayares DL, et al. 2017; Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model. Xenotransplantation. 24:e12330. DOI:
10.1111/xen.12330. PMID:
28940570.
Article
65. Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ, et al. 2012; Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol. 52:958–61. DOI:
10.1016/j.yjmcc.2012.01.002. PMID:
22269791. PMCID:
PMC3327755.
Article
66. Tena A, Kurtz J, Leonard DA, Dobrinsky JR, Terlouw SL, Mtango N, et al. 2014; Transgenic expression of human CD47 markedly increases engraftment in a murine model of pig-to-human hematopoietic cell transplantation. Am J Transplant. 14:2713–22. DOI:
10.1111/ajt.12918. PMID:
25278264. PMCID:
PMC4236244.
Article
67. Yan JJ, Koo TY, Lee HS, Lee WB, Kang B, Lee JG, et al. 2018; Role of human CD200 overexpression in pig-to-human xenogeneic immune response compared with human CD47 overexpression. Transplantation. 102:406–16. DOI:
10.1097/TP.0000000000001966. PMID:
28968355.
Article
68. Weiss EH, Lilienfeld BG, Müller S, Müller E, Herbach N, Kessler B, et al. 2009; HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation. 87:35–43. DOI:
10.1097/TP.0b013e318191c784. PMID:
19136889.
Article
69. Rao JS, Hosny N, Kumbha R, Naqvi RA, Singh A, Swanson Z, et al. 2021; HLA-G1+ expression in GGTA1KO pigs suppresses human and monkey anti-pig T, B and NK cell responses. Front Immunol. 12:730545. DOI:
10.3389/fimmu.2021.730545. PMID:
34566993. PMCID:
PMC8459615.
Article
70. Wang HT, Maeda A, Sakai R, Lo PC, Takakura C, Jiaravuthisan P, et al. 2018; Human CD31 on porcine cells suppress xenogeneic neutrophil-mediated cytotoxicity via the inhibition of NETosis. Xenotransplantation. 25:e12396. DOI:
10.1111/xen.12396. PMID:
29635708.
Article
71. Buermann A, Petkov S, Petersen B, Hein R, Lucas- Hahn A, Baars W, et al. 2018; Pigs expressing the human inhibitory ligand PD-L1 (CD274) provide a new source of xenogeneic cells and tissues with low immunogenic properties. Xenotransplantation. 25:e12387. DOI:
10.1111/xen.12387. PMID:
29446180.
Article
72. Paris LL, Chihara RK, Sidner RA, Tector AJ, Burlak C. 2012; Differences in human and porcine platelet oligosaccharides may influence phagocytosis by liver sinusoidal cells in vitro. Xenotransplantation. 19:31–9. DOI:
10.1111/j.1399-3089.2011.00685.x. PMID:
22360751.
Article
73. Cui Y, Yamamoto T, Raza SS, Morsi M, Nguyen HQ, Ayares D, et al. 2020; Evidence for GTKO/β4GalNT2KO pigs as the preferred organ-source for old world nonhuman primates as a preclinical model of xenotransplantation. Transplant Direct. 6:e590. DOI:
10.1097/TXD.0000000000001038. PMID:
32766438. PMCID:
PMC7382549.
Article
75. Feng H, Li T, Du J, Xia Q, Wang L, Chen S, et al. 2022; Both natural and induced anti-Sda antibodies play important roles in GTKO pig- to-rhesus monkey xenotransplantation. Front Immunol. 13:849711. DOI:
10.3389/fimmu.2022.849711. PMID:
35422817. PMCID:
PMC9004458.
Article