Korean J Physiol Pharmacol.  2025 Mar;29(2):245-255. 10.4196/kjpp.24.352.

Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells

Affiliations
  • 1Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
  • 2Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
  • 3Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea

Abstract

Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/– mice given high-fat diet to investigate the effects of monotropein on atherosclerosis. Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.

Keyword

Atherosclerosis; Migration; Monotropein; Proliferation; Vascular smooth muscle

Figure

  • Fig. 1 Analysis of aortic plaques in mice. (A) Diagram of experimental design. (B, C) Sudan 4 staining of mouse and quantitative analysis. Scale bar, 1 cm. (D–G) H&E and Masson staining of mouse aortic roots and quantitative analysis; scale bar, 50 µm. The black arrow indicates the necrotic cores. 3 male mice were used in this experiment. Bar graphs are mean ± SEM, statistical significance *p < 0.05, **p < 0.01, ***p < 0.001, nsp < 0.05. HFD, high-fat diet; MTP, monotropein.

  • Fig. 2 Monotropein effect on vascular smooth muscle cell proliferation. (A) CCK-8 assay was conducted to assess the effect of different concentrations of monotropein on vascular smooth muscle cell viability. n = 3 independent experiments. (B) EDU assay to determine the proliferation of vascular smooth muscle cells; scale bar, 100 µm. n = 3 independent experiments. (C) Protein levels of PCNA, α-SMA in cells. n = 3 independent experiments. (D) Calculation of proliferation rate of vascular smooth muscle cells. (E) Quantitative analysis of EDU in vascular smooth muscle cells. (F, G) Quantitative analysis of PCNA and α-SMA. (H, I) Quantification of PCNA and Acta2 expressions by qPCR. (J, K) Immunofluorescence staining of mouse aortic root and quantitative analysis of arterial plaques with PCNA (green) and Myh11 (red). Scale bar, 50 µm. n = 3 independent experiments. (L) Expressions of PCNA and Acta2 in the aorta. n = 3 independent experiments. (M, N) EDU proliferation staining and quantification of mouse aorta; scale bar, 50 µm. n = 3 independent experiments. (O, P) Quantitative analysis of PCNA and Acta2 expressions in the aorta. Bar graphs depict mean ± SEM; one-way ANOVA *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. PCNA, proliferative cell nuclear antigen; α-SMA, α-smooth muscle actin; ox-LDL, oxidized low density lipoprotein; HFD, high-fat diet; MTP, monotropein; NCD, normal diet.

  • Fig. 3 Monotropein effect on vascular smooth muscle cell migration. (A) Scratch experiment. Scale bar, 100 µm. n = 3 independent experiments. (B) Immunofluorescence co-staining of mouse aortic roots. The green color in the plaque represents MMP-2, red color represents Myh11. Scale bar, 50 µm. n = 3 independent experiments. (C) MMP-2 protein level in cells. n = 3 independent experiments. (D) Expression of MMP-2 in mouse aorta. n = 3 independent experiments. (E) Blank area statistics of scratch experiments. (F, G) Quantitative analysis of MMP-2 mRNA levels in cells. (H) Quantitative analysis of immunofluorescence staining in mouse aortic roots. (I) Quantitative analysis of MMP-2 protein levels in mouse aorta. Bar graphs depict mean ± SEM; one-way ANOVA *p < 0.05, **p < 0.01. MMP-2, matrix metalloproteinase-2; ox-LDL, oxidized low density lipoprotein; HFD, high-fat diet; MTP, monotropein; NCD, normal diet.

  • Fig. 4 Effect of monotropein on inflammation and oxidative stress in vascular smooth muscle cells. (A–C) Protein levels of TNF-α and 4-HNE in cells and quantitative analysis. n = 3 independent experiments. (D, E) Measurement of ROS activity in cells and quantitative analysis. Scale bar, 100 µm. n = 3 independent experiments. (F, G) mRNA expression levels of TNF-α and 4-HNE in cells and quantitative analysis. (H, I) Immunofluorescence staining of mouse aortic root. Green fluorescence in plaques denotes TNF-α and 4-HNE, and the red fluorescence presents Acta2. Scale bar, 50 µm. n = 3 independent experiments. (J) Protein levels of TNF-α and 4-HNE in mouse aorta. n = 3 independent experiments. (K, L) Quantitative analysis of immunofluorescence staining. (M, N) Quantitative analysis of protein levels of TNF-α and 4-HNE in mouse aorta. Bar graphs depict mean ± SEM; one-way ANOVA *p < 0.05, **p < 0.01, ***p < 0.001. ROS, reactive oxygen species; ox-LDL, oxidized low density lipoprotein; HFD, high-fat diet; MTP, monotropein; NCD, normal diet.

  • Fig. 5 Effect of monotropein on NF- κB and AP-1 activities. (A–E) NF-κB, P-NF-κB, AP-1, P-AP-1 protein levels in cells and quantification. n = 3 independent experiments. (F–J) NF-κB, P-NF-κB, AP-1, and P-AP-1 protein levels and quantification in mouse aorta. n = 3 independent experiments. Bar graphs depict mean ± SEM; one-way ANOVA *p < 0.05, **p < 0.01, ***p < 0.001, nsp < 0.05. ox-LDL, oxidized low density lipoprotein; HFD, high-fat diet; MTP, monotropein; NCD, normal diet.


Reference

1. Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang L, Wang Y. 2019; Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics. 9:6901–6919. DOI: 10.7150/thno.37357. PMID: 31660076. PMCID: PMC6815950.
Article
2. Ding H, Pan Q, Qian L, Hu C. 2022; Differentially expressed mRNAs and their upstream miR-491-5p in patients with coronary atherosclerosis as well as the function of miR-491-5p in vascular smooth muscle cells. Korean J Physiol Pharmacol. 26:183–193. DOI: 10.4196/kjpp.2022.26.3.183. PMID: 35477546. PMCID: PMC9046892.
Article
3. Liu YX, Yuan PZ, Wu JH, Hu B. 2021; Lipid accumulation and novel insight into vascular smooth muscle cells in atherosclerosis. J Mol Med (Berl). 99:1511–1526. DOI: 10.1007/s00109-021-02109-8. PMID: 34345929.
Article
4. Farina FM, Serio S, Hall IF, Zani S, Cassanmagnago GA, Climent M, Civilini E, Condorelli G, Quintavalle M, Elia L. 2022; The epigenetic enzyme DOT1L orchestrates vascular smooth muscle cell-monocyte crosstalk and protects against atherosclerosis via the NF-κB pathway. Eur Heart J. 43:4562–4576. DOI: 10.1093/eurheartj/ehac097. PMID: 35292818.
Article
5. Grootaert MOJ, Bennett MR. 2021; Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovasc Res. 117:2326–2339. DOI: 10.1093/cvr/cvab046. PMID: 33576407. PMCID: PMC8479803.
Article
6. Bi X, Du C, Wang X, Wang XY, Han W, Wang Y, Qiao Y, Zhu Y, Ran L, Liu Y, Xiong J, Huang Y, Liu M, Liu C, Zeng C, Wang J, Yang K, Zhao J. 2021; Mitochondrial damage-induced innate immune activation in vascular smooth muscle cells promotes chronic kidney disease-associated plaque vulnerability. Adv Sci (Weinh). 8:2002738. DOI: 10.1002/advs.202002738. PMID: 33717842. PMCID: PMC7927614.
Article
7. Kim JW, Kim JY, Bae HE, Kim CD. 2024; Biophysically stressed vascular smooth muscle cells express MCP-1viaa PDGFR-β-HMGB1 signaling pathway. Korean J Physiol Pharmacol. 28:449–456. DOI: 10.4196/kjpp.2024.28.5.449. PMID: 39198225. PMCID: PMC11361998.
Article
8. Zhang JH, Xin HL, Xu YM, Shen Y, He YQ, Lin B, Song HT, Yang HY, Qin LP, Zhang QY, Du J. Hsien-Yeh. Juan-Liu. 2018; Morinda officinalis How. - A comprehensive review of traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 213:230–255. DOI: 10.1016/j.jep.2017.10.028. PMID: 29126988.
Article
9. Zhang Q, Hu S, He Y, Song Z, Shen Y, Zhao Z, Zhang Q, Qin L, Zhang Q. 2022; Monotropein protects against inflammatory bone loss and suppresses osteoclast formation and bone resorption by inhibiting NFATc1 via NF-κB and Akt/GSK-3β pathway. Nutrients. 14:3978. DOI: 10.3390/nu14193978. PMID: 36235631. PMCID: PMC9571677.
Article
10. Shi Y, Liu XY, Jiang YP, Zhang JB, Zhang QY, Wang NN, Xin HL. 2020; Monotropein attenuates oxidative stress via Akt/mTOR-mediated autophagy in osteoblast cells. Biomed Pharmacother. 121:109566. DOI: 10.1016/j.biopha.2019.109566. PMID: 31698268.
Article
11. Wang C, Mao C, Lou Y, Xu J, Wang Q, Zhang Z, Tang Q, Zhang X, Xu H, Feng Y. 2018; Monotropein promotes angiogenesis and inhibits oxidative stress-induced autophagy in endothelial progenitor cells to accelerate wound healing. J Cell Mol Med. 22:1583–1600. Erratum in: J Cell Mol Med. 2021;25:10322-10325. DOI: 10.1111/jcmm.13434. PMID: 29278309. PMCID: PMC5824424.
Article
12. Fang Z, Wei W, Jiang X. 2023; Monotropein attenuates doxorubicin-induced oxidative stress, inflammation, and arrhythmia via the AKT signal pathway. Biochem Biophys Res Commun. 638:14–22. DOI: 10.1016/j.bbrc.2022.11.058. PMID: 36436337.
Article
13. Wu M, Lai H, Peng W, Zhou X, Zhu L, Tu H, Yuan K, Yang Z. 2023; Monotropein: a comprehensive review of biosynthesis, physicochemical properties, pharmacokinetics, and pharmacology. Front Pharmacol. 14:1109940. DOI: 10.3389/fphar.2023.1109940. PMID: 36937894. PMCID: PMC10017856.
Article
14. Niu N, Xu S, Xu Y, Little PJ, Jin ZG. 2019; Targeting mechanosensitive transcription factors in atherosclerosis. Trends Pharmacol Sci. 40:253–266. DOI: 10.1016/j.tips.2019.02.004. PMID: 30826122. PMCID: PMC6433497.
Article
15. Hseu YC, Senthil Kumar KJ, Chen CS, Cho HJ, Lin SW, Shen PC, Lin CW, Lu FJ, Yang HL. 2014; Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: a possible role in atherosclerosis. Toxicol Appl Pharmacol. 274:249–262. DOI: 10.1016/j.taap.2013.11.002. PMID: 24239652.
Article
16. Shin JS, Yun KJ, Chung KS, Seo KH, Park HJ, Cho YW, Baek NI, Jang D, Lee KT. 2013; Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-κB inactivation. Food Chem Toxicol. 53:263–271. DOI: 10.1016/j.fct.2012.12.013. PMID: 23261679.
Article
17. Gong Y, Wang J. 2023; Monotropein alleviates sepsis-elicited acute lung injury via the NF-κB pathway. J Pharm Pharmacol. 75:1249–1258. DOI: 10.1093/jpp/rgad051. PMID: 37279779.
Article
18. Xia L, Xie H, Yu Y, Zhou H, Wang T, Yan J. 2016; The effects of NF-κB and c-Jun/AP-1 on the expression of prothrombotic and proinflammatory molecules induced by anti-β2GPI in mouse. PLoS One. 11:e0147958. DOI: 10.1371/journal.pone.0147958. PMID: 26829121. PMCID: PMC4735462.
Article
19. Yin L, Shi C, Zhang Z, Wang W, Li M. 2021; Formosanin C attenuates lipopolysaccharide-induced inflammation through nuclear factor-κB inhibition in macrophages. Korean J Physiol Pharmacol. 25:395–401. DOI: 10.4196/kjpp.2021.25.5.395. PMID: 34448457. PMCID: PMC8405437.
Article
20. Barreca MM, Alessandro R, Corrado C. 2023; Effects of flavonoids on cancer, cardiovascular and neurodegenerative diseases: role of NF-κB signaling pathway. Int J Mol Sci. 24:9236. DOI: 10.3390/ijms24119236. PMID: 37298188. PMCID: PMC10252664.
Article
21. Ji Z, He L, Regev A, Struhl K. 2019; Inflammatory regulatory network mediated by the joint action of NF-kB, STAT3, and AP-1 factors is involved in many human cancers. Proc Natl Acad Sci U S A. 116:9453–9462. DOI: 10.1073/pnas.1821068116. PMID: 30910960. PMCID: PMC6511065.
Article
22. Yoshitomi Y, Ikeda T, Saito-Takatsuji H, Yonekura H. 2021; Emerging role of AP-1 transcription factor JunB in angiogenesis and vascular development. Int J Mol Sci. 22:2804. DOI: 10.3390/ijms22062804. PMID: 33802099. PMCID: PMC8000613.
Article
23. Nguyen HT, Najih M, Martin LJ. 2021; The AP-1 family of transcription factors are important regulators of gene expression within Leydig cells. Endocrine. 74:498–507. DOI: 10.1007/s12020-021-02888-7. PMID: 34599696.
Article
24. Sun D, Zhang M, Li Y, Mei S, Qin J, Yan J. 2019; c-Jun/Ap-1 is upregulated in an Ang II-induced abdominal aortic aneurysm formation model and mediates Chop expression in mouse aortic smooth muscle cells. Mol Med Rep. 19:3459–3468. DOI: 10.3892/mmr.2019.10017. PMID: 30864718. PMCID: PMC6472129.
Article
25. Ji R, Gu Y, Zhang J, Gao C, Gao W, Zang X, Zhao Y. 2020; TRIM7 promotes proliferation and migration of vascular smooth muscle cells in atherosclerosis through activating c-Jun/AP-1. IUBMB Life. 72:247–258. DOI: 10.1002/iub.2181. PMID: 31625258.
Article
26. Sozen E, Karademir B, Yazgan B, Bozaykut P, Ozer NK. 2014; Potential role of proteasome on c-jun related signaling in hypercholesterolemia induced atherosclerosis. Redox Biol. 2:732–738. DOI: 10.1016/j.redox.2014.02.007. PMID: 25009774. PMCID: PMC4085352.
Article
27. Zhang HW, Zhang T, Shen BZ, Liu M, Liu JR. 2012; Toxicological insight from AP-1 silencing study on proliferation, migration, and dedifferentiation of rat vascular smooth muscle cell. Cardiovasc Toxicol. 12:25–38. DOI: 10.1007/s12012-011-9135-x. PMID: 21818553.
Article
28. Kim TW, Shin JS, Chung KS, Lee YG, Baek NI, Lee KT. 2019; Anti-inflammatory mechanisms of koreanaside A, a lignan isolated from the flower ofForsythia koreana, against LPS-induced macrophage activation and DSS-induced colitis mice: the crucial role of AP-1, NF-κB, and JAK/STAT signaling. Cells. 8:1163. DOI: 10.3390/cells8101163. PMID: 31569788. PMCID: PMC6829247.
Article
29. Ma S, Bai Z, Wu H, Wang W. 2019; The DPP-4 inhibitor saxagliptin ameliorates ox-LDL-induced endothelial dysfunction by regulating AP-1 and NF-κB. Eur J Pharmacol. 851:186–193. DOI: 10.1016/j.ejphar.2019.01.008. PMID: 30639312.
Article
30. Lin X, Wu M, Liu B, Wang J, Guan G, Ma A, Zhang Y. 2015; Candesartan ameliorates acute myocardial infarctioninrats through inducible nitric oxide synthase, nuclearfactor-κB, monocyte chemoattractant protein-1, activatorprotein-1 and restoration of heat shock protein 72. Mol Med Rep. 12:8193–8200. DOI: 10.3892/mmr.2015.4432. PMID: 26499133.
Article
31. Jeong GW, Lee HH, Lee-Kwon W, Kwon HM. 2020; Microglial TonEBP mediates LPS-induced inflammation and memory loss as transcriptional cofactor for NF-κB and AP-1. J Neuroinflammation. 17:372. DOI: 10.1186/s12974-020-02007-9. PMID: 33292328. PMCID: PMC7722447.
Article
32. Ahn SH, Park H, Ahn YH, Kim S, Cho MS, Kang JL, Choi YH. 2016; Necrotic cells influence migration and invasion of glioblastoma via NF-κB/AP-1-mediated IL-8 regulation. Sci Rep. 6:24552. DOI: 10.1038/srep24552. PMID: 27076368. PMCID: PMC4830983.
Article
33. Jiang F, Xu XR, Li WM, Xia K, Wang LF, Yang XC. 2020; Monotropein alleviates H2O2-induced inflammation, oxidative stress and apoptosis via NF-κB/AP-1 signaling. Mol Med Rep. 22:4828–4836. DOI: 10.3892/mmr.2020.11548. PMID: 33173962. PMCID: PMC7646929.
Article
34. Tabas I, Bornfeldt KE. 2016; Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 118:653–667. DOI: 10.1161/CIRCRESAHA.115.306256. PMID: 26892964. PMCID: PMC4762068.
Article
35. Groh L, Keating ST, Joosten LAB, Netea MG, Riksen NP. 2018; Monocyte and macrophage immunometabolism in atherosclerosis. Semin Immunopathol. 40:203–214. DOI: 10.1007/s00281-017-0656-7. PMID: 28971272. PMCID: PMC5809534.
Article
36. Xue S, Su Z, Liu D. 2023; Immunometabolism and immune response regulate macrophage function in atherosclerosis. Ageing Res Rev. 90:101993. DOI: 10.1016/j.arr.2023.101993. PMID: 37379970.
Article
37. Gimbrone MA Jr, García-Cardeña G. 2016; Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 118:620–636. DOI: 10.1161/CIRCRESAHA.115.306301. PMID: 26892962. PMCID: PMC4762052.
Article
38. Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. 2023; New dawn for atherosclerosis: vascular endothelial cell senescence and death. Int J Mol Sci. 24:15160. DOI: 10.3390/ijms242015160. PMID: 37894840. PMCID: PMC10606899.
Article
39. Frismantiene A, Philippova M, Erne P, Resink TJ. 2018; Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal. 52:48–64. DOI: 10.1016/j.cellsig.2018.08.019. PMID: 30172025.
Article
40. Shen Y, Zhang Q, Wu YB, He YQ, Han T, Zhang JH, Zhao L, Hsu HY, Song HT, Lin B, Xin HL, Qi YP, Zhang QY. 2018; Pharmacokinetics and tissue distribution of monotropein and deacetyl asperulosidic acid after oral administration of extracts from Morinda officinalis root in rats. BMC Complement Altern Med. 18:288. DOI: 10.1186/s12906-018-2351-1. PMID: 30355303. PMCID: PMC6201592.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr