Korean J Physiol Pharmacol.  2025 Mar;29(2):129-138. 10.4196/kjpp.24.240.

Functional interplay between non-canonical inflammasomes and autophagy in inflammatory responses and diseases

Affiliations
  • 1Department of Life Sciences, Kyonggi University, Suwon 16227, Korea

Abstract

The inflammasome is a cytosolic multiprotein platform that plays a key role in the inflammatory response, an essential innate immune response that protects the body from pathogens and cellular danger signals. Autophagy is a fundamental cellular mechanism that maintains homeostasis through the elimination and recycling of dysfunctional molecules and subcellular elements. Many previous studies have demonstrated a functional interplay between canonical inflammasomes that were earlier discovered and autophagy in inflammatory responses and diseases. Given the increasing evidence that non-canonical inflammasomes are unique and key factors in inflammatory responses, the functional interplay between non-canonical inflammasomes and autophagy is noteworthy. Recent studies have demonstrated that non-canonical inflammasomes and autophagy are functionally correlated with inflammatory responses and diseases. This review comprehensively discusses recent studies that have investigated the functional interplay of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4, with autophagy and autophagy-related proteins in inflammatory responses and diseases and provides insight into the development of novel anti-inflammatory therapeutics by modulating the functional interplay between non-canonical inflammasomes and autophagy.

Keyword

Autophagy; Caspase-4; Caspase-11; Inflammation; Non-canonical inflammasome

Figure

  • Fig. 1 Non-canonical inflammasomes and non-canonical inflammasome-activated inflammatory signaling pathways. (A) Domain structure of mouse caspase-11 and human caspase-4 and caspase-5. Caspase-11, caspase-4, and caspase-5 have same domain structure composed of amino-terminal CARDs, followed by large (p20) and small (p10) catalytic domains, but different amino acid lengths; 373, 377, and 434 amino acids, respectively. (B) Sensing of LPS by caspase-4/5/11. Caspase-4/5/11 senses cytosolic LPS by direct interaction between CARDs of caspase-4/5/11 and lipid A of LPS, which leads to the formation of LPS-caspase-4/5/11 complexes. (C) Non-canonical inflammasome-activated inflammatory signaling pathways. LPS derived from gram-negative bacteria is internalized into the host cells, and caspase-4/5/11 directly senses the cytosolic LPS, leading to the formation of LPS-caspase-4/5/11 complexes and caspase-4/5/11 non-canonical inflammasomes by oligomerization through CARD-CARD interaction. Caspase-4/5/11 non-canonical inflammasomes activated by autoproteolytic cleavage induce the proteolytic cleavage of GSDMD and the generation of GSDMD pores, resulting in pyroptosis of the cells. Caspase-4/5/11 non-canonical inflammasome activation induces NLRP3 inflammasome-mediated proteolytic activation of caspase-1, leading to the proteolytic maturation and secretion of IL-1β and IL-18 through GSDMD pores. CARD, caspase recruitment domain; LPS, lipopolysaccharide; GSDMD, gasdermin D; IL, interleukin.

  • Fig. 2 Summary of functional interplay between mouse caspase-11 non-canonical inflammasome and autophagy. (A) Inhibitory role of autophagy in caspase-11 non-canonical inflammasome during infection with vacuolar gram-negative bacteria in mouse macrophages. (B) Inhibitory role of autophagy in NRF2-mediated caspase-11 non-canonical inflammasome activation and HMGB1 release during inflammatory responses in hepatocytes. (C) Inhibitory role of autophagy-related proteins in caspase-11 non-canonical inflammasome in macrophages and LPS-induced acute lethal septic mice. (D) Induction of autophagy by caspase-11 non-canonical inflammasome in response to bacterial infection in the macrophages. HMGB1, high‐mobility group box 1; LPS, lipopolysaccharide; GBP, guanylate‐binding protein.

  • Fig. 3 Summary of functional interplay between human caspase-4 non-canonical inflammasome and autophagy. CMECs, cardiac microvascular endothelial cells.


Reference

1. Janeway CA Jr, Medzhitov R. 2002; Innate immune recognition. Annu Rev Immunol. 20:197–216. DOI: 10.1146/annurev.immunol.20.083001.084359. PMID: 11861602.
Article
2. Yi YS. 2020; Functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes during infection-mediated inflammation. Immunology. 159:142–155. DOI: 10.1111/imm.13134. PMID: 31630388. PMCID: PMC6954705.
Article
3. Cicala C, Morello S. 2023; Signaling pathways in inflammation and its resolution: new insights and therapeutic challenges. Int J Mol Sci. 24:11055. DOI: 10.3390/ijms241311055. PMID: 37446232. PMCID: PMC10341743.
Article
4. Rathinam VAK, Zhao Y, Shao F. 2019; Innate immunity to intracellular LPS. Nat Immunol. 20:527–533. DOI: 10.1038/s41590-019-0368-3. PMID: 30962589. PMCID: PMC7668400.
Article
5. Yun M, Yi YS. 2020; Regulatory roles of ginseng on inflammatory caspases, executioners of inflammasome activation. J Ginseng Res. 44:373–385. DOI: 10.1016/j.jgr.2019.12.006. PMID: 32372859. PMCID: PMC7195600.
Article
6. Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM. 2019; Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol. 40:1035–1052. DOI: 10.1016/j.it.2019.09.005. PMID: 31662274.
7. Lu F, Lan Z, Xin Z, He C, Guo Z, Xia X, Hu T. 2020; Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. J Cell Physiol. 235:3207–3221. DOI: 10.1002/jcp.29268. PMID: 31621910.
Article
8. Song H, Yang B, Li Y, Qian A, Kang Y, Shan X. 2022; Focus on the mechanisms and functions of pyroptosis, inflammasomes, and inflammatory caspases in infectious diseases. Oxid Med Cell Longev. 2022:2501279. DOI: 10.1155/2022/2501279. PMID: 35132346. PMCID: PMC8817853.
Article
9. Broz P, Dixit VM. 2016; Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 16:407–420. DOI: 10.1038/nri.2016.58. PMID: 27291964.
Article
10. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. 2013; Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 341:1250–1253. DOI: 10.1126/science.1240988. PMID: 24031018. PMCID: PMC3931427.
Article
11. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F. 2014; Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 514:187–192. DOI: 10.1038/nature13683. PMID: 25119034.
Article
12. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszyński A, Forsberg LS, Carlson RW, Dixit VM. 2013; Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. 341:1246–1249. DOI: 10.1126/science.1240248. PMID: 23887873.
Article
13. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM. 2011; Non-canonical inflammasome activation targets caspase-11. Nature. 479:117–121. DOI: 10.1038/nature10558. PMID: 22002608.
Article
14. Chauhan D, Vande Walle L, Lamkanfi M. 2020; Therapeutic modulation of inflammasome pathways. Immunol Rev. 297:123–138. DOI: 10.1111/imr.12908. PMID: 32770571. PMCID: PMC7497261.
Article
15. Christgen S, Kanneganti TD. 2020; Inflammasomes and the fine line between defense and disease. Curr Opin Immunol. 62:39–44. DOI: 10.1016/j.coi.2019.11.007. PMID: 31837596. PMCID: PMC7067632.
Article
16. Yi YS. 2017; Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology. 152:207–217. DOI: 10.1111/imm.12787. PMID: 28695629. PMCID: PMC5588777.
Article
17. Yi YS. 2018; Regulatory roles of the caspase-11 non-canonical inflammasome in inflammatory diseases. Immune Netw. 18:e41. DOI: 10.4110/in.2018.18.e41. PMID: 30619627. PMCID: PMC6312891.
Article
18. Bulté D, Rigamonti C, Romano A, Mortellaro A. 2023; Inflammasomes: mechanisms of action and involvement in human diseases. Cells. 12:1766. DOI: 10.3390/cells12131766. PMID: 37443800. PMCID: PMC10340308.
Article
19. Li Y, Huang H, Liu B, Zhang Y, Pan X, Yu XY, Shen Z, Song YH. 2021; Inflammasomes as therapeutic targets in human diseases. Signal Transduct Target Ther. 6:247. DOI: 10.1038/s41392-021-00650-z. PMID: 34210954. PMCID: PMC8249422.
Article
20. Chen Y, Ye X, Escames G, Lei W, Zhang X, Li M, Jing T, Yao Y, Qiu Z, Wang Z, Acuña-Castroviejo D, Yang Y. 2023; The NLRP3 inflammasome: contributions to inflammation-related diseases. Cell Mol Biol Lett. 28:51. DOI: 10.1186/s11658-023-00462-9. PMID: 37370025. PMCID: PMC10303833.
Article
21. Byun DJ, Lee J, Yu JW, Hyun YM. 2023; NLRP3 exacerbate NETosis-associated neuroinflammation in an LPS-induced inflamed brain. Immune Netw. 23:e27. DOI: 10.4110/in.2023.23.e27. PMID: 37416934. PMCID: PMC10320420.
Article
22. Chae BJ, Lee KS, Hwang I, Yu JW. 2023; Extracellular acidification augments NLRP3-mediated inflammasome signaling in macrophages. Immune Netw. 23:e23. DOI: 10.4110/in.2023.23.e23. PMID: 37416933. PMCID: PMC10320421.
Article
23. Cho HJ, Kim E, Yi YS. 2023; Korean red ginseng saponins play an anti-inflammatory role by targeting caspase-11 non-canonical inflammasome in macrophages. Int J Mol Sci. 24:1077. DOI: 10.3390/ijms24021077. PMID: 36674594. PMCID: PMC9861816.
Article
24. Cho HJ, Lee DJ, Yi YS. 2023; Anti-inflammatory activity of calmodulin-lysine N-methyltransferase through suppressing the caspase-11 non-canonical inflammasome. Immunobiology. 228:152758. DOI: 10.1016/j.imbio.2023.152758. PMID: 37948850.
Article
25. Joon Lee D, Yeol Lee S, Yi YS. 2024; Maclurin inhibits caspase-11 non-canonical inflammasome in macrophages and ameliorates acute lethal sepsis in mice. Int Immunopharmacol. 129:111615. Erratum in: Int Immunopharmacol. 2024;132:111969. DOI: 10.1016/j.intimp.2024.111969. PMID: 38575463.
Article
26. Min JH, Cho HJ, Yi YS. 2022; A novel mechanism of Korean Red Ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages. J Ginseng Res. 46:675–682. DOI: 10.1016/j.jgr.2021.12.009. PMID: 36090677. PMCID: PMC9459075.
Article
27. Yi YS. 2024; MicroRNA-mediated epigenetic regulation of inflammasomes in inflammatory responses and immunopathologies. Semin Cell Dev Biol. 154:227–238. DOI: 10.1016/j.semcdb.2022.11.006. PMID: 36437174.
Article
28. Yi YS. 2024; Roles of the caspase-11 non-canonical inflammasome in rheumatic diseases. Int J Mol Sci. 25:2091. DOI: 10.3390/ijms25042091. PMID: 38396768. PMCID: PMC10888639.
Article
29. Yi YS. 2023; Regulatory roles of flavonoids in caspase-11 non-canonical inflammasome-mediated inflammatory responses and diseases. Int J Mol Sci. 24:10402. DOI: 10.3390/ijms241210402. PMID: 37373549. PMCID: PMC10298970.
Article
30. Kim YB, Cho HJ, Yi YS. 2023; Anti-inflammatory role of Artemisia argyi methanol extract by targeting the caspase-11 non-canonical inflammasome in macrophages. J Ethnopharmacol. 307:116231. DOI: 10.1016/j.jep.2023.116231. PMID: 36754190.
Article
31. Yi YS. 2022; Potential benefits of ginseng against COVID-19 by targeting inflammasomes. J Ginseng Res. 46:722–730. DOI: 10.1016/j.jgr.2022.03.008. PMID: 35399195. PMCID: PMC8979607.
Article
32. Yi YS. 2022; Dual roles of the caspase-11 non-canonical inflammasome in inflammatory bowel disease. Int Immunopharmacol. 108:108739. DOI: 10.1016/j.intimp.2022.108739. PMID: 35366642.
Article
33. Yi YS. 2022; Regulatory roles of caspase-11 non-canonical inflammasome in inflammatory liver diseases. Int J Mol Sci. 23:4986. DOI: 10.3390/ijms23094986. PMID: 35563377. PMCID: PMC9104167.
Article
34. Yi YS. 2021; Caspase-11 noncanonical inflammasome: a novel key player in murine models of neuroinflammation and multiple sclerosis. Neuroimmunomodulation. 28:195–203. DOI: 10.1159/000516064. PMID: 34044393.
Article
35. Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N, Rubinsztein DC, Partridge L, Kroemer G, Labbadia J, Fang EF. 2021; Autophagy in healthy aging and disease. Nat Aging. 1:634–650. DOI: 10.1038/s43587-021-00098-4. PMID: 34901876. PMCID: PMC8659158.
Article
36. Mizushima N, Komatsu M. 2011; Autophagy: renovation of cells and tissues. Cell. 147:728–741. DOI: 10.1016/j.cell.2011.10.026. PMID: 22078875.
Article
37. Dikic I, Elazar Z. 2018; Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. DOI: 10.1038/s41580-018-0003-4. PMID: 29618831.
Article
38. Yang Y, Klionsky DJ. 2020; Autophagy and disease: unanswered questions. Cell Death Differ. 27:858–871. DOI: 10.1038/s41418-019-0480-9. PMID: 31900427. PMCID: PMC7206137.
Article
39. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo MI, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen EL, Fimia GM, et al. 2021; Autophagy in major human diseases. EMBO J. 40:e108863. DOI: 10.15252/embj.2021108863. PMID: 34459017. PMCID: PMC8488577.
Article
40. Lu G, Wang Y, Shi Y, Zhang Z, Huang C, He W, Wang C, Shen HM. 2022; Autophagy in health and disease: from molecular mechanisms to therapeutic target. MedComm (2020). 3:e150. DOI: 10.1002/mco2.150. PMID: 35845350. PMCID: PMC9271889.
Article
41. Deretic V. 2021; Autophagy in inflammation, infection, and immunometabolism. Immunity. 54:437–453. DOI: 10.1016/j.immuni.2021.01.018. PMID: 33691134. PMCID: PMC8026106.
Article
42. Matsuzawa-Ishimoto Y, Hwang S, Cadwell K. 2018; Autophagy and Inflammation. Annu Rev Immunol. 36:73–101. DOI: 10.1146/annurev-immunol-042617-053253. PMID: 29144836.
Article
43. Pang Y, Wu L, Tang C, Wang H, Wei Y. 2022; Autophagy-inflammation interplay during infection: balancing pathogen clearance and host inflammation. Front Pharmacol. 13:832750. DOI: 10.3389/fphar.2022.832750. PMID: 35273506. PMCID: PMC8902503.
Article
44. Zuo H, Chen C, Sa Y. 2023; Therapeutic potential of autophagy in immunity and inflammation: current and future perspectives. Pharmacol Rep. 75:499–510. DOI: 10.1007/s43440-023-00486-0. PMID: 37119445. PMCID: PMC10148586.
Article
45. Bonam SR, Mastrippolito D, Georgel P, Muller S. 2024; Pharmacological targets at the lysosomal autophagy-NLRP3 inflammasome crossroads. Trends Pharmacol Sci. 45:81–101. DOI: 10.1016/j.tips.2023.11.005. PMID: 38102020.
Article
46. Zhao S, Li X, Wang J, Wang H. 2021; The role of the effects of autophagy on NLRP3 inflammasome in inflammatory nervous system diseases. Front Cell Dev Biol. 9:657478. DOI: 10.3389/fcell.2021.657478. PMID: 34079796. PMCID: PMC8166298.
Article
47. Biasizzo M, Kopitar-Jerala N. 2020; Interplay between NLRP3 inflammasome and autophagy. Front Immunol. 11:591803. DOI: 10.3389/fimmu.2020.591803. PMID: 33163006. PMCID: PMC7583715.
Article
48. Lee BL, Stowe IB, Gupta A, Kornfeld OS, Roose-Girma M, Anderson K, Warming S, Zhang J, Lee WP, Kayagaki N. 2018; Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J Exp Med. 215:2279–2288. DOI: 10.1084/jem.20180589. PMID: 30135078. PMCID: PMC6122968.
Article
49. Akuma DC, Wodzanowski KA, Schwartz Wertman R, Exconde PM, Vázquez Marrero VR, Odunze CE, Grubaugh D, Shin S, Taabazuing C, Brodsky IE. 2024; Catalytic activity and autoprocessing of murine caspase-11 mediate noncanonical inflammasome assembly in response to cytosolic LPS. Elife. 13:e83725. DOI: 10.7554/eLife.83725. PMID: 38231198. PMCID: PMC10794067.
Article
50. Meunier E, Dick MS, Dreier RF, Schürmann N, Kenzelmann Broz D, Warming S, Roose-Girma M, Bumann D, Kayagaki N, Takeda K, Yamamoto M, Broz P. 2014; Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature. 509:366–370. DOI: 10.1038/nature13157. PMID: 24739961.
Article
51. Khambu B, Cai G, Liu G, Bailey NT, Mercer AA, Baral K, Ma M, Chen X, Li Y, Yin XM. 2023; NRF2 transcriptionally regulates Caspase-11 expression to activate HMGB1 release by Autophagy-deficient hepatocytes. Cell Death Discov. 9:270. DOI: 10.1038/s41420-023-01495-x. PMID: 37507374. PMCID: PMC10382497.
Article
52. Khambu B, Huda N, Chen X, Antoine DJ, Li Y, Dai G, Köhler UA, Zong WX, Waguri S, Werner S, Oury TD, Dong Z, Yin XM. 2019; HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest. 129:2163. DOI: 10.1172/JCI129233.
Article
53. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC. 2016; Mammalian autophagy: how does it work? Annu Rev Biochem. 85:685–713. DOI: 10.1146/annurev-biochem-060815-014556. PMID: 26865532.
Article
54. Sakaguchi N, Sasai M, Bando H, Lee Y, Pradipta A, Ma JS, Yamamoto M. 2020; Role of Gate-16 and Gabarap in prevention of caspase-11-dependent excess inflammation and lethal endotoxic shock. Front Immunol. 11:561948. DOI: 10.3389/fimmu.2020.561948. PMID: 33042141. PMCID: PMC7522336.
Article
55. Traver MK, Henry SC, Cantillana V, Oliver T, Hunn JP, Howard JC, Beer S, Pfeffer K, Coers J, Taylor GA. 2011; Immunity-related GTPase M (IRGM) proteins influence the localization of guanylate-binding protein 2 (GBP2) by modulating macroautophagy. J Biol Chem. 286:30471–30480. Erratum. DOI: 10.1074/jbc.M111.251967. PMID: 21757726. PMCID: PMC3162407.
Article
56. Singh SB, Davis AS, Taylor GA, Deretic V. 2006; Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science. 313:1438–1441. DOI: 10.1126/science.1129577. PMID: 16888103.
Article
57. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. 2004; Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 119:753–766. DOI: 10.1016/j.cell.2004.11.038. PMID: 15607973.
Article
58. Finethy R, Dockterman J, Kutsch M, Orench-Rivera N, Wallace GD, Piro AS, Luoma S, Haldar AK, Hwang S, Martinez J, Kuehn MJ, Taylor GA, Coers J. 2020; Dynamin-related Irgm proteins modulate LPS-induced caspase-11 activation and septic shock. EMBO Rep. 21:e50830. DOI: 10.15252/embr.202050830. PMID: 33124745. PMCID: PMC7645254.
Article
59. Eren E, Planès R, Bagayoko S, Bordignon PJ, Chaoui K, Hessel A, Santoni K, Pinilla M, Lagrange B, Burlet-Schiltz O, Howard JC, Henry T, Yamamoto M, Meunier E. 2020; Irgm2 and Gate-16 cooperatively dampen Gram-negative bacteria-induced caspase-11 response. EMBO Rep. 21:e50829. DOI: 10.15252/embr.202050829. PMID: 33124769. PMCID: PMC7645206.
Article
60. Krause K, Caution K, Badr A, Hamilton K, Saleh A, Patel K, Seveau S, Hall-Stoodley L, Hegazi R, Zhang X, Gavrilin MA, Amer AO. 2018; CASP4/caspase-11 promotes autophagosome formation in response to bacterial infection. Autophagy. 14:1928–1942. DOI: 10.1080/15548627.2018.1491494. PMID: 30165781. PMCID: PMC6152495.
Article
61. Sun W, Lu H, Dong S, Li R, Chu Y, Wang N, Zhao Y, Zhang Y, Wang L, Sun L, Lu D. 2021; Beclin1 controls caspase-4 inflammsome activation and pyroptosis in mouse myocardial reperfusion-induced microvascular injury. Cell Commun Signal. 19:107. DOI: 10.1186/s12964-021-00786-z. PMID: 34732218. PMCID: PMC8565084.
Article
62. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T. 2009; Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 11:385–396. DOI: 10.1038/ncb1846. PMID: 19270696.
Article
63. de Torre-Minguela C, Mesa Del Castillo P, Pelegrín P. 2017; The NLRP3 and pyrin inflammasomes: implications in the pathophysiology of autoinflammatory diseases. Front Immunol. 8:43. DOI: 10.3389/fimmu.2017.00043. PMID: 28191008. PMCID: PMC5271383.
Article
64. Lu R, Zhang L, Yang X. 2022; Interaction between autophagy and the NLRP3 inflammasome in Alzheimer's and Parkinson's disease. Front Aging Neurosci. 14:1018848. DOI: 10.3389/fnagi.2022.1018848. PMID: 36262883. PMCID: PMC9574200.
Article
65. Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. 2021; An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 18:1141–1160. DOI: 10.1038/s41423-021-00670-3. PMID: 33850310. PMCID: PMC8093260.
Article
66. Li Z, Liu W, Fu J, Cheng S, Xu Y, Wang Z, Liu X, Shi X, Liu Y, Qi X, Liu X, Ding J, Shao F. 2021; Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature. 599:290–295. DOI: 10.1038/s41586-021-04020-1. PMID: 34671164.
Article
67. Cahoon J, Yang D, Wang P. 2022; The noncanonical inflammasome in health and disease. Infect Med (Beijing). 1:208–216. DOI: 10.1016/j.imj.2022.09.001. PMID: 38077630. PMCID: PMC10699704.
Article
68. Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. 2024; Targeting autophagy drug discovery: targets, indications and development trends. Eur J Med Chem. 267:116117. DOI: 10.1016/j.ejmech.2023.116117. PMID: 38295689.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr