1. Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci. 2000; 113:1851–1856. PMID:
10806096.
Article
2. Han K, Holder JL Jr, Schaaf CP, et al.
SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature. 2013; 503:72–77. PMID:
24153177.
Article
3. Wang L, Pang K, Han K, et al. An autism-linked missense mutation in
SHANK3 reveals the modularity of Shank3 function. Mol Psychiatry. 2020; 25:2534–2555. PMID:
30610205.
Article
4. Jin C, Kim S, Kang H, et al. Shank3 regulates striatal synaptic abundance of Cyld, a deubiquitinase specific for Lys63-linked polyubiquitin chains. J Neurochem. 2019; 150:776–786. PMID:
31215654.
Article
5. Costales JL, Kolevzon A. Phelan-McDermid syndrome and
SHANK3: implications for treatment. Neurotherapeutics. 2015; 12:620–630. PMID:
25894671.
Article
6. Ey E, Bourgeron T, Boeckers TM, Kim E, Han K. Editorial: Shankopathies: Shank protein deficiency-induced synaptic diseases. Front Mol Neurosci. 2020; 13:11. PMID:
32116544.
Article
7. Leblond CS, Nava C, Polge A, et al. Meta-analysis of
SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014; 10:e1004580. PMID:
25188300.
8. Chen S, Francioli LC, Goodrich JK, et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature. 2024; 625:92–100. PMID:
38057664.
9. Schön M, Lapunzina P, Nevado J, et al. Definition and clinical variability of
SHANK3-related Phelan-McDermid syndrome. Eur J Med Genet. 2023; 66:104754. PMID:
37003575.
10. Sauer AK, Bockmann J, Steinestel K, Boeckers TM, Grabrucker AM. Altered intestinal morphology and microbiota composition in the autism spectrum disorders associated SHANK3 mouse model. Int J Mol Sci. 2019; 20:2134. PMID:
31052177.
Article
11. Lutz AK, Pfaender S, Incearap B, et al. Autism-associated SHANK3 mutations impair maturation of neuromuscular junctions and striated muscles. Sci Transl Med. 2020; 12:eaaz3267. PMID:
32522805.
Article
12. Kim Y, Ko TH, Jin C, et al. The emerging roles of Shank3 in cardiac function and dysfunction. Front Cell Dev Biol. 2023; 11:1191369. PMID:
37187620.
Article
13. Grubb DR, Luo J, Yu YL, Woodcock EA. Scaffolding protein Homer 1c mediates hypertrophic responses downstream of Gq in cardiomyocytes. FASEB J. 2012; 26:596–603. PMID:
22012123.
Article
14. Man W, Gu J, Wang B, et al. SHANK3 co-ordinately regulates autophagy and apoptosis in myocardial infarction. Front Physiol. 2020; 11:1082. PMID:
32982797.
Article
15. Wang Y, Xu Y, Guo W, et al. Ablation of Shank3 alleviates cardiac dysfunction in aging mice by promoting CaMKII activation and Parkin-mediated mitophagy. Redox Biol. 2022; 58:102537. PMID:
36436456.
Article
16. Jin C, Zhang Y, Kim S, Kim Y, Lee Y, Han K. Spontaneous seizure and partial lethality of juvenile
Shank3-overexpressing mice in C57BL/6 J background. Mol Brain. 2018; 11:57. PMID:
30305163.
17. Cesarovic N, Jirkof P, Rettich A, Arras M. Implantation of radiotelemetry transmitters yielding data on ECG, heart rate, core body temperature and activity in free-moving laboratory mice. J Vis Exp. 2011; (57):3260. PMID:
22126906.
Article
18. Mitchell GF, Jeron A, Koren G. Measurement of heart rate and Q-T interval in the conscious mouse. Am J Physiol. 1998; 274:H747–H751. PMID:
9530184.
Article
19. Kim JC, Woo SH. Shear stress induces a longitudinal Ca
2+ wave via autocrine activation of P2Y
1 purinergic signalling in rat atrial myocytes. J Physiol. 2015; 593:5091–5109. PMID:
26377030.
Article
20. Son MJ, Kim HK, Huong TT, et al. Chrysosplenol C increases contraction in rat ventricular myocytes. J Cardiovasc Pharmacol. 2011; 57:259–262. PMID:
21052017.
Article
21. Xie Z, Bailey A, Kuleshov MV, et al. Gene set knowledge discovery with Enrichr. Curr Protoc. 2021; 1:e90. PMID:
33780170.
Article
22. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013; 41:D377–D386. PMID:
23193289.
Article
23. Yang Q, Perfitt TL, Quay J, Hu L, Lawson-Qureshi D, Colbran RJ. Clustering of Ca
V1.3 L-type calcium channels by Shank3. J Neurochem. 2023; 167:16–37. PMID:
37392026.
Article
24. Luo M, Anderson ME. Mechanisms of altered Ca
2+ handling in heart failure. Circ Res. 2013; 113:690–708. PMID:
23989713.
25. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018; 128:3716–3726. PMID:
30124471.
Article
26. Worley PF, Zeng W, Huang G, et al. Homer proteins in Ca
2+ signaling by excitable and non-excitable cells. Cell Calcium. 2007; 42:363–371. PMID:
17618683.
Article
27. Hayashi MK, Tang C, Verpelli C, et al. The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell. 2009; 137:159–171. PMID:
19345194.
Article
28. Parmacek MS, Solaro RJ. Biology of the troponin complex in cardiac myocytes. Prog Cardiovasc Dis. 2004; 47:159–176. PMID:
15736582.
Article
29. Firth HV, Richards SM, Bevan AP, et al. DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet. 2009; 84:524–533. PMID:
19344873.
Article
30. Ruderfer DM, Hamamsy T, Lek M, et al. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nat Genet. 2016; 48:1107–1111. PMID:
27533299.
Article