3. Gladka MM, Molenaar B, de Ruiter H, et al. 2018; Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation. 138:166–180. DOI:
10.1161/CIRCULATIONAHA.117.030742. PMID:
29386203.
4. Farbehi N, Patrick R, Dorison A, et al. 2019; Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 8:e43882. DOI:
10.7554/eLife.43882. PMID:
30912746. PMCID:
PMC6459677.
5. Ruan H, Liao Y, Ren Z, et al. 2019; Single-cell reconstruction of differentiation trajectory reveals a critical role of ETS1 in human cardiac lineage commitment. BMC Biol. 17:89. DOI:
10.1186/s12915-019-0709-6. PMID:
31722692. PMCID:
PMC6854813.
6. Friedman CE, Nguyen Q, Lukowski SW, et al. 2018; Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. Cell Stem Cell. 23:586–598.e8. DOI:
10.1016/j.stem.2018.09.009. PMID:
30290179. PMCID:
PMC6220122.
7. Paik DT, Cho S, Tian L, Chang HY, Wu JC. 2020; Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol. 17:457–473. DOI:
10.1038/s41569-020-0359-y. PMID:
32231331. PMCID:
PMC7528042.
10. Wang L, Yu P, Zhou B, et al. 2020; Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol. 22:108–119. DOI:
10.1038/s41556-019-0446-7. PMID:
31915373.
11. Selewa A, Dohn R, Eckart H, et al. 2020; Systematic comparison of high-throughput single-cell and single-nucleus transcriptomes during cardiomyocyte differentiation. Sci Rep. 10:1535. DOI:
10.1038/s41598-020-58327-6. PMID:
32001747. PMCID:
PMC6992778.
12. Lacar B, Linker SB, Jaeger BN, et al. 2017; Corrigendum: nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat Commun. 8:15047. DOI:
10.1038/ncomms15047. PMID:
28303884. PMCID:
PMC5357833.
13. Zhang X, Qiu H, Zhang F, Ding S. 2022; Advances in single-cell multi-omics and application in cardiovascular research. Front Cell Dev Biol. 10:883861. DOI:
10.3389/fcell.2022.883861. PMID:
35733851. PMCID:
PMC9207481.
14. Macosko EZ, Basu A, Satija R, et al. 2015; Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 161:1202–1214. DOI:
10.1016/j.cell.2015.05.002. PMID:
26000488. PMCID:
PMC4481139.
15. Zilionis R, Nainys J, Veres A, et al. 2017; Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 12:44–73. DOI:
10.1038/nprot.2016.154. PMID:
27929523.
16. Cao J, Packer JS, Ramani V, et al. 2017; Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 357:661–667. DOI:
10.1126/science.aam8940. PMID:
28818938. PMCID:
PMC5894354.
17. Rosenberg AB, Roco CM, Muscat RA, et al. 2018; Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 360:176–182. DOI:
10.1126/science.aam8999. PMID:
29545511. PMCID:
PMC7643870.
18. Grindberg RV, Yee-Greenbaum JL, McConnell MJ, et al. 2013; RNA-sequencing from single nuclei. Proc Natl Acad Sci U S A. 110:19802–19807. DOI:
10.1073/pnas.1319700110. PMID:
24248345. PMCID:
PMC3856806.
20. Tang F, Barbacioru C, Wang Y, et al. 2009; mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 6:377–382. DOI:
10.1038/nmeth.1315. PMID:
19349980.
21. Xu X, Jin K, Bais AS, et al. 2022; Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease. Cell Stem Cell. 29:840–855.e7. DOI:
10.1016/j.stem.2022.03.003. PMID:
35395180. PMCID:
PMC9302582.
23. Simonson B, Chaffin M, Hill MC, et al. 2023; Single-nucleus RNA sequencing in ischemic cardiomyopathy reveals common transcriptional profile underlying end-stage heart failure. Cell Rep. 42:112086. DOI:
10.1016/j.celrep.2023.112086. PMID:
36790929. PMCID:
PMC10423750.
24. Rotem A, Ram O, Shoresh N, et al. 2015; Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol. 33:1165–1172. DOI:
10.1038/nbt.3383. PMID:
26458175. PMCID:
PMC4636926.
25. Buenrostro JD, Wu B, Litzenburger UM, et al. 2015; Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 523:486–490. DOI:
10.1038/nature14590. PMID:
26083756. PMCID:
PMC4685948.
26. Lareau CA, Duarte FM, Chew JG, et al. 2019; Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat Biotechnol. 37:916–924. DOI:
10.1038/s41587-019-0147-6. PMID:
31235917. PMCID:
PMC10299900.
28. Frei AP, Bava FA, Zunder ER, et al. 2016; Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat Methods. 13:269–275. DOI:
10.1038/nmeth.3742. PMID:
26808670. PMCID:
PMC4767631.
30. Genshaft AS, Li S, Gallant CJ, et al. 2016; Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 17:188. DOI:
10.1186/s13059-016-1045-6. PMID:
27640647. PMCID:
PMC5027636.
31. Stoeckius M, Hafemeister C, Stephenson W, et al. 2017; Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 14:865–868. DOI:
10.1038/nmeth.4380. PMID:
28759029. PMCID:
PMC5669064.
32. Peterson VM, Zhang KX, Kumar N, et al. 2017; Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. 35:936–939. DOI:
10.1038/nbt.3973. PMID:
28854175.
34. Gerlach JP, van Buggenum JAG, Tanis SEJ, et al. 2019; Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells. Sci Rep. 9:1469. DOI:
10.1038/s41598-018-37977-7. PMID:
30728416. PMCID:
PMC6365588.
35. Mimitou EP, Lareau CA, Chen KY, et al. 2021; Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol. 39:1246–1258. DOI:
10.1038/s41587-021-00927-2. PMID:
34083792. PMCID:
PMC8763625.
38. Takahashi K, Yamanaka S. 2006; Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. DOI:
10.1016/j.cell.2006.07.024. PMID:
16904174.
41. Biendarra-Tiegs SM, Li X, Ye D, Brandt EB, Ackerman MJ, Nelson TJ. 2019; Single-cell RNA-sequencing and optical electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes reveal discordance between cardiac subtype-associated gene expression patterns and electrophysiological phenotypes. Stem Cells Dev. 28:659–673. DOI:
10.1089/scd.2019.0030. PMID:
30892143. PMCID:
PMC6534093.
42. Jiang CL, Goyal Y, Jain N, et al. 2022; Cell type determination for cardiac differentiation occurs soon after seeding of human-induced pluripotent stem cells. Genome Biol. 23:90. DOI:
10.1186/s13059-022-02654-6. PMID:
35382863. PMCID:
PMC8985385.
43. Lin Y, Gil CH, Yoder MC. 2017; Differentiation, evaluation, and application of human induced pluripotent stem cell-derived endothelial cells. Arterioscler Thromb Vasc Biol. 37:2014–2025. DOI:
10.1161/ATVBAHA.117.309962. PMID:
29025705.
44. Paik DT, Tian L, Lee J, et al. 2018; Large-scale single-cell RNA-Seq reveals molecular signatures of heterogeneous populations of human induced pluripotent stem cell-derived endothelial cells. Circ Res. 123:443–450. DOI:
10.1161/CIRCRESAHA.118.312913. PMID:
29986945. PMCID:
PMC6202208.
45. Helle E, Ampuja M, Dainis A, et al. 2021; HiPS-endothelial cells acquire cardiac endothelial phenotype in co-culture with hiPS-cardiomyocytes. Front Cell Dev Biol. 9:715093. DOI:
10.3389/fcell.2021.715093. PMID:
34422835. PMCID:
PMC8378235.
46. Sinnecker D, Goedel A, Dorn T, Dirschinger RJ, Moretti A, Laugwitz KL. 2013; Modeling long-QT syndromes with iPS cells. J Cardiovasc Transl Res. 6:31–36. DOI:
10.1007/s12265-012-9416-1. PMID:
23076501.
48. Sun N, Yazawa M, Liu J, et al. 2012; Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 4:130ra47. DOI:
10.1126/scitranslmed.3003552.
49. Han L, Li Y, Tchao J, et al. 2014; Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res. 104:258–269. DOI:
10.1093/cvr/cvu205. PMID:
25209314. PMCID:
PMC4217687.
50. Mehrabi M, Morris TA, Cang Z, et al. 2021; A study of gene expression, structure, and contractility of iPSC-derived cardiac myocytes from a family with heart disease due to LMNA mutation. Ann Biomed Eng. 49:3524–3539. DOI:
10.1007/s10439-021-02850-8. PMID:
34585335. PMCID:
PMC8671287.
51. Zhou D, Feng H, Yang Y, et al. 2021; hiPSC modeling of lineage-specific smooth muscle cell defects caused by
TGFBR1A230T variant, and its therapeutic implications for Loeys-Dietz syndrome. Circulation. 144:1145–1159. DOI:
10.1161/CIRCULATIONAHA.121.054744. PMID:
34346740. PMCID:
PMC8681699.
52. Kathiriya IS, Rao KS, Iacono G, et al. 2021; Modeling human TBX5 haploinsufficiency predicts regulatory networks for congenital heart disease. Dev Cell. 56:292–309.e9. DOI:
10.1016/j.devcel.2020.11.020. PMID:
33321106. PMCID:
PMC7878434.
53. Paige SL, Galdos FX, Lee S, et al. 2020; Patient-specific induced pluripotent stem cells implicate intrinsic impaired contractility in hypoplastic left heart syndrome. Circulation. 142:1605–1608. DOI:
10.1161/CIRCULATIONAHA.119.045317. PMID:
33074758. PMCID:
PMC7583658.
55. Lam YY, Keung W, Chan CH, et al. 2020; Single-cell transcriptomics of engineered cardiac tissues from patient-specific induced pluripotent stem cell-derived cardiomyocytes reveals abnormal developmental trajectory and intrinsic contractile defects in hypoplastic right heart syndrome. J Am Heart Assoc. 9:e016528. DOI:
10.1161/JAHA.120.016528. PMID:
33059525. PMCID:
PMC7763394.
56. Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N. 2014; Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J. 167:292–300. DOI:
10.1016/j.ahj.2013.11.004. PMID:
24576511.
57. Tanaka T, Tohyama S, Murata M, et al. 2009;
In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun. 385:497–502. DOI:
10.1016/j.bbrc.2009.05.073. PMID:
19464263.
58. Sharma A, Burridge PW, McKeithan WL, et al. 2017; High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci Transl Med. 9:eaaf2584. DOI:
10.1126/scitranslmed.aaf2584. PMID:
28202772. PMCID:
PMC5409837.
59. Archer CR, Sargeant R, Basak J, Pilling J, Barnes JR, Pointon A. 2018; Characterization and validation of a human 3D cardiac microtissue for the assessment of changes in cardiac pathology. Sci Rep. 8:10160. DOI:
10.1038/s41598-018-28393-y. PMID:
29976997. PMCID:
PMC6033897.
60. Truitt R, Mu A, Corbin EA, et al. 2018; Increased afterload augments sunitinib-induced cardiotoxicity in an engineered cardiac microtissue model. JACC Basic Transl Sci. 3:265–276. DOI:
10.1016/j.jacbts.2017.12.007. PMID:
30062212. PMCID:
PMC6059907.
61. Magdy T, Jiang Z, Jouni M, et al. 2021; RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy. Cell Stem Cell. 28:2076–2089.e7. DOI:
10.1016/j.stem.2021.08.006. PMID:
34525346. PMCID:
PMC8642268.
62. Sallam K, Thomas D, Gaddam S, et al. 2022; Modeling effects of immunosuppressive drugs on human hearts using induced pluripotent stem cell-derived cardiac organoids and single-cell RNA sequencing. Circulation. 145:1367–1369. DOI:
10.1161/CIRCULATIONAHA.121.054317. PMID:
35467958. PMCID:
PMC9472526.
63. Zhang H, Tian L, Shen M, et al. 2019; Generation of quiescent cardiac fibroblasts from human induced pluripotent stem cells for
in vitro modeling of cardiac fibrosis. Circ Res. 125:552–566. DOI:
10.1161/CIRCRESAHA.119.315491. PMID:
31288631. PMCID:
PMC6768436.
64. Feyen DAM, Perea-Gil I, Maas RGC, et al. 2021; Unfolded protein response as a compensatory mechanism and potential therapeutic target in PLN R14del cardiomyopathy. Circulation. 144:382–392. DOI:
10.1161/CIRCULATIONAHA.120.049844. PMID:
33928785. PMCID:
PMC8667423.
65. Hulin A, Hortells L, Gomez-Stallons MV, et al. 2019; Maturation of heart valve cell populations during postnatal remodeling. Development. 146:dev173047. DOI:
10.1242/dev.173047. PMID:
30796046. PMCID:
PMC6602342.
66. Khan SU, Huang Y, Ali H, et al. 2024; Single-cell RNA sequencing (scRNA-seq): advances and challenges for cardiovascular diseases (CVDs). Curr Probl Cardiol. 49:102202. DOI:
10.1016/j.cpcardiol.2023.102202. PMID:
37967800.
67. Matsumoto R, Yamamoto T, Takahashi Y. 2021; Complex organ construction from human pluripotent stem cells for biological research and disease modeling with new emerging techniques. Int J Mol Sci. 22:10184. DOI:
10.3390/ijms221910184. PMID:
34638524. PMCID:
PMC8508560.
68. Wu T, Liang Z, Zhang Z, et al. 2022; PRDM16 is a compact myocardium-enriched transcription factor required to maintain compact myocardial cardiomyocyte identity in left ventricle. Circulation. 145:586–602. DOI:
10.1161/CIRCULATIONAHA.121.056666. PMID:
34915728. PMCID:
PMC8860879.
69. Ko T, Nomura S, Yamada S, et al. 2022; Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis. Nat Commun. 13:3275. DOI:
10.1038/s41467-022-30630-y. PMID:
35672400. PMCID:
PMC9174232.
70. Camp JG, Wollny D, Treutlein B. 2018; Single-cell genomics to guide human stem cell and tissue engineering. Nat Methods. 15:661–667. DOI:
10.1038/s41592-018-0113-0. PMID:
30171231.