Int J Stem Cells.  2025 Feb;18(1):37-48. 10.15283/ijsc23183.

Applications of Single-Cell Omics Technologies for Induced Pluripotent Stem Cell-Based Cardiovascular Research

Affiliations
  • 1Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
  • 2K-BioX, Palo Alto, CA, USA
  • 3Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
  • 4Department of Biology, Kyung Hee University, Seoul, Korea
  • 5Department of Systems Biotechnology, Konkuk University, Seoul, Korea
  • 6Asthma Research Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
  • 7Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
  • 8Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA

Abstract

Single-cell omics technologies have transformed our investigation of genomic, transcriptomic, and proteomic landscapes at the individual cell level. In particular, the application of single-cell RNA sequencing has unveiled the complex transcriptional variations inherent in cardiac cells, offering valuable perspectives into their dynamics. This review focuses on the integration of single-cell omics with induced pluripotent stem cells (iPSCs) in the context of cardiovascular research, offering a unique avenue to deepen our understanding of cardiac biology. By synthesizing insights from various single-cell technologies, we aim to elucidate the molecular intricacies of heart health and diseases. Beyond current methodologies, we explore the potential of emerging paradigms such as single-cell/spatial omics, delving into their capacity to reveal the spatial organization of cellular components within cardiac tissues. Furthermore, we anticipate their transformative role in shaping the future of cardiovascular research. This review aims to contribute to the advancement of knowledge in the field, offering a comprehensive perspective on the synergistic potential of transcriptomic analyses, iPSC applications, and the evolving frontier of spatial omics.

Keyword

Transcriptome analysis; Induced pluripotent stem cells; Organoids; Cardiovascular diseases

Figure

  • Fig. 1 Overview of the application of human induced pluripotent stem cells (hiPSCs) in single-cell omics technology and cardiovascular research.


Reference

References

1. Wang D, Bodovitz S. 2010; Single cell analysis: the new frontier in 'omics'. Trends Biotechnol. 28:281–290. DOI: 10.1016/j.tibtech.2010.03.002. PMID: 20434785. PMCID: PMC2876223.
2. Hasin Y, Seldin M, Lusis A. 2017; Multi-omics approaches to disease. Genome Biol. 18:83. DOI: 10.1186/s13059-017-1215-1. PMID: 28476144. PMCID: PMC5418815.
3. Gladka MM, Molenaar B, de Ruiter H, et al. 2018; Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation. 138:166–180. DOI: 10.1161/CIRCULATIONAHA.117.030742. PMID: 29386203.
4. Farbehi N, Patrick R, Dorison A, et al. 2019; Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 8:e43882. DOI: 10.7554/eLife.43882. PMID: 30912746. PMCID: PMC6459677.
5. Ruan H, Liao Y, Ren Z, et al. 2019; Single-cell reconstruction of differentiation trajectory reveals a critical role of ETS1 in human cardiac lineage commitment. BMC Biol. 17:89. DOI: 10.1186/s12915-019-0709-6. PMID: 31722692. PMCID: PMC6854813.
6. Friedman CE, Nguyen Q, Lukowski SW, et al. 2018; Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. Cell Stem Cell. 23:586–598.e8. DOI: 10.1016/j.stem.2018.09.009. PMID: 30290179. PMCID: PMC6220122.
7. Paik DT, Cho S, Tian L, Chang HY, Wu JC. 2020; Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol. 17:457–473. DOI: 10.1038/s41569-020-0359-y. PMID: 32231331. PMCID: PMC7528042.
8. Dai Z, Nomura S. 2021; Recent progress in cardiovascular research involving single-cell omics approaches. Front Cardiovasc Med. 8:783398. DOI: 10.3389/fcvm.2021.783398. PMID: 34977189. PMCID: PMC8716466.
9. Yamada S, Nomura S. 2020; Review of single-cell RNA sequencing in the heart. Int J Mol Sci. 21:8345. DOI: 10.3390/ijms21218345. PMID: 33172208. PMCID: PMC7664385.
10. Wang L, Yu P, Zhou B, et al. 2020; Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol. 22:108–119. DOI: 10.1038/s41556-019-0446-7. PMID: 31915373.
11. Selewa A, Dohn R, Eckart H, et al. 2020; Systematic comparison of high-throughput single-cell and single-nucleus transcriptomes during cardiomyocyte differentiation. Sci Rep. 10:1535. DOI: 10.1038/s41598-020-58327-6. PMID: 32001747. PMCID: PMC6992778.
12. Lacar B, Linker SB, Jaeger BN, et al. 2017; Corrigendum: nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat Commun. 8:15047. DOI: 10.1038/ncomms15047. PMID: 28303884. PMCID: PMC5357833.
13. Zhang X, Qiu H, Zhang F, Ding S. 2022; Advances in single-cell multi-omics and application in cardiovascular research. Front Cell Dev Biol. 10:883861. DOI: 10.3389/fcell.2022.883861. PMID: 35733851. PMCID: PMC9207481.
14. Macosko EZ, Basu A, Satija R, et al. 2015; Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 161:1202–1214. DOI: 10.1016/j.cell.2015.05.002. PMID: 26000488. PMCID: PMC4481139.
15. Zilionis R, Nainys J, Veres A, et al. 2017; Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 12:44–73. DOI: 10.1038/nprot.2016.154. PMID: 27929523.
16. Cao J, Packer JS, Ramani V, et al. 2017; Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 357:661–667. DOI: 10.1126/science.aam8940. PMID: 28818938. PMCID: PMC5894354.
17. Rosenberg AB, Roco CM, Muscat RA, et al. 2018; Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 360:176–182. DOI: 10.1126/science.aam8999. PMID: 29545511. PMCID: PMC7643870.
18. Grindberg RV, Yee-Greenbaum JL, McConnell MJ, et al. 2013; RNA-sequencing from single nuclei. Proc Natl Acad Sci U S A. 110:19802–19807. DOI: 10.1073/pnas.1319700110. PMID: 24248345. PMCID: PMC3856806.
19. Potter SS. 2018; Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 14:479–492. DOI: 10.1038/s41581-018-0021-7. PMID: 29789704. PMCID: PMC6070143.
20. Tang F, Barbacioru C, Wang Y, et al. 2009; mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 6:377–382. DOI: 10.1038/nmeth.1315. PMID: 19349980.
21. Xu X, Jin K, Bais AS, et al. 2022; Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease. Cell Stem Cell. 29:840–855.e7. DOI: 10.1016/j.stem.2022.03.003. PMID: 35395180. PMCID: PMC9302582.
22. Litviňuková M, Talavera-López C, Maatz H, et al. 2020; Cells of the adult human heart. Nature. 588:466–472. DOI: 10.1038/s41586-020-2797-4. PMID: 32971526. PMCID: PMC7681775.
23. Simonson B, Chaffin M, Hill MC, et al. 2023; Single-nucleus RNA sequencing in ischemic cardiomyopathy reveals common transcriptional profile underlying end-stage heart failure. Cell Rep. 42:112086. DOI: 10.1016/j.celrep.2023.112086. PMID: 36790929. PMCID: PMC10423750.
24. Rotem A, Ram O, Shoresh N, et al. 2015; Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol. 33:1165–1172. DOI: 10.1038/nbt.3383. PMID: 26458175. PMCID: PMC4636926.
25. Buenrostro JD, Wu B, Litzenburger UM, et al. 2015; Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 523:486–490. DOI: 10.1038/nature14590. PMID: 26083756. PMCID: PMC4685948.
26. Lareau CA, Duarte FM, Chew JG, et al. 2019; Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat Biotechnol. 37:916–924. DOI: 10.1038/s41587-019-0147-6. PMID: 31235917. PMCID: PMC10299900.
27. Baysoy A, Bai Z, Satija R, Fan R. 2023; The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 24:695–713. DOI: 10.1038/s41580-023-00615-w. PMID: 37280296. PMCID: PMC10242609.
28. Frei AP, Bava FA, Zunder ER, et al. 2016; Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat Methods. 13:269–275. DOI: 10.1038/nmeth.3742. PMID: 26808670. PMCID: PMC4767631.
29. Darmanis S, Gallant CJ, Marinescu VD, et al. 2016; Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep. 14:380–389. DOI: 10.1016/j.celrep.2015.12.021. PMID: 26748716. PMCID: PMC4713867.
30. Genshaft AS, Li S, Gallant CJ, et al. 2016; Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 17:188. DOI: 10.1186/s13059-016-1045-6. PMID: 27640647. PMCID: PMC5027636.
31. Stoeckius M, Hafemeister C, Stephenson W, et al. 2017; Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 14:865–868. DOI: 10.1038/nmeth.4380. PMID: 28759029. PMCID: PMC5669064.
32. Peterson VM, Zhang KX, Kumar N, et al. 2017; Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. 35:936–939. DOI: 10.1038/nbt.3973. PMID: 28854175.
33. Hwang B, Lee DS, Tamaki W, et al. 2021; SCITO-seq: single-cell combinatorial indexed cytometry sequencing. Nat Methods. 18:903–911. DOI: 10.1038/s41592-021-01222-3. PMID: 34354295. PMCID: PMC8643207.
34. Gerlach JP, van Buggenum JAG, Tanis SEJ, et al. 2019; Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells. Sci Rep. 9:1469. DOI: 10.1038/s41598-018-37977-7. PMID: 30728416. PMCID: PMC6365588.
35. Mimitou EP, Lareau CA, Chen KY, et al. 2021; Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol. 39:1246–1258. DOI: 10.1038/s41587-021-00927-2. PMID: 34083792. PMCID: PMC8763625.
36. Chen Y, Liu Y, Gao X. 2021; The application of single-cell technologies in cardiovascular research. Front Cell Dev Biol. 9:751371. DOI: 10.3389/fcell.2021.751371. PMID: 34708045. PMCID: PMC8542723.
37. Luecken MD, Theis FJ. 2019; Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 15:e8746. DOI: 10.15252/msb.20188746. PMID: 31217225. PMCID: PMC6582955.
38. Takahashi K, Yamanaka S. 2006; Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. DOI: 10.1016/j.cell.2006.07.024. PMID: 16904174.
39. Savoji H, Mohammadi MH, Rafatian N, et al. 2019; Cardiovascular disease models: a game changing paradigm in drug discovery and screening. Biomaterials. 198:3–26. DOI: 10.1016/j.biomaterials.2018.09.036. PMID: 30343824. PMCID: PMC6397087.
40. Hnatiuk AP, Briganti F, Staudt DW, Mercola M. 2021; Human iPSC modeling of heart disease for drug development. Cell Chem Biol. 28:271–282. DOI: 10.1016/j.chembiol.2021.02.016. PMID: 33740432. PMCID: PMC8054828.
41. Biendarra-Tiegs SM, Li X, Ye D, Brandt EB, Ackerman MJ, Nelson TJ. 2019; Single-cell RNA-sequencing and optical electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes reveal discordance between cardiac subtype-associated gene expression patterns and electrophysiological phenotypes. Stem Cells Dev. 28:659–673. DOI: 10.1089/scd.2019.0030. PMID: 30892143. PMCID: PMC6534093.
42. Jiang CL, Goyal Y, Jain N, et al. 2022; Cell type determination for cardiac differentiation occurs soon after seeding of human-induced pluripotent stem cells. Genome Biol. 23:90. DOI: 10.1186/s13059-022-02654-6. PMID: 35382863. PMCID: PMC8985385.
43. Lin Y, Gil CH, Yoder MC. 2017; Differentiation, evaluation, and application of human induced pluripotent stem cell-derived endothelial cells. Arterioscler Thromb Vasc Biol. 37:2014–2025. DOI: 10.1161/ATVBAHA.117.309962. PMID: 29025705.
44. Paik DT, Tian L, Lee J, et al. 2018; Large-scale single-cell RNA-Seq reveals molecular signatures of heterogeneous populations of human induced pluripotent stem cell-derived endothelial cells. Circ Res. 123:443–450. DOI: 10.1161/CIRCRESAHA.118.312913. PMID: 29986945. PMCID: PMC6202208.
45. Helle E, Ampuja M, Dainis A, et al. 2021; HiPS-endothelial cells acquire cardiac endothelial phenotype in co-culture with hiPS-cardiomyocytes. Front Cell Dev Biol. 9:715093. DOI: 10.3389/fcell.2021.715093. PMID: 34422835. PMCID: PMC8378235.
46. Sinnecker D, Goedel A, Dorn T, Dirschinger RJ, Moretti A, Laugwitz KL. 2013; Modeling long-QT syndromes with iPS cells. J Cardiovasc Transl Res. 6:31–36. DOI: 10.1007/s12265-012-9416-1. PMID: 23076501.
47. Yazawa M, Dolmetsch RE. 2013; Modeling Timothy syndrome with iPS cells. J Cardiovasc Transl Res. 6:1–9. DOI: 10.1007/s12265-012-9444-x. PMID: 23299782. PMCID: PMC3637984.
48. Sun N, Yazawa M, Liu J, et al. 2012; Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 4:130ra47. DOI: 10.1126/scitranslmed.3003552.
49. Han L, Li Y, Tchao J, et al. 2014; Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res. 104:258–269. DOI: 10.1093/cvr/cvu205. PMID: 25209314. PMCID: PMC4217687.
50. Mehrabi M, Morris TA, Cang Z, et al. 2021; A study of gene expression, structure, and contractility of iPSC-derived cardiac myocytes from a family with heart disease due to LMNA mutation. Ann Biomed Eng. 49:3524–3539. DOI: 10.1007/s10439-021-02850-8. PMID: 34585335. PMCID: PMC8671287.
51. Zhou D, Feng H, Yang Y, et al. 2021; hiPSC modeling of lineage-specific smooth muscle cell defects caused by TGFBR1A230T variant, and its therapeutic implications for Loeys-Dietz syndrome. Circulation. 144:1145–1159. DOI: 10.1161/CIRCULATIONAHA.121.054744. PMID: 34346740. PMCID: PMC8681699.
52. Kathiriya IS, Rao KS, Iacono G, et al. 2021; Modeling human TBX5 haploinsufficiency predicts regulatory networks for congenital heart disease. Dev Cell. 56:292–309.e9. DOI: 10.1016/j.devcel.2020.11.020. PMID: 33321106. PMCID: PMC7878434.
53. Paige SL, Galdos FX, Lee S, et al. 2020; Patient-specific induced pluripotent stem cells implicate intrinsic impaired contractility in hypoplastic left heart syndrome. Circulation. 142:1605–1608. DOI: 10.1161/CIRCULATIONAHA.119.045317. PMID: 33074758. PMCID: PMC7583658.
54. Miao Y, Tian L, Martin M, et al. 2020; Intrinsic endocardial defects contribute to hypoplastic left heart syndrome. Cell Stem Cell. 27:574–589.e8. DOI: 10.1016/j.stem.2020.07.015. PMID: 32810435. PMCID: PMC7541479.
55. Lam YY, Keung W, Chan CH, et al. 2020; Single-cell transcriptomics of engineered cardiac tissues from patient-specific induced pluripotent stem cell-derived cardiomyocytes reveals abnormal developmental trajectory and intrinsic contractile defects in hypoplastic right heart syndrome. J Am Heart Assoc. 9:e016528. DOI: 10.1161/JAHA.120.016528. PMID: 33059525. PMCID: PMC7763394.
56. Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N. 2014; Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J. 167:292–300. DOI: 10.1016/j.ahj.2013.11.004. PMID: 24576511.
57. Tanaka T, Tohyama S, Murata M, et al. 2009; In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun. 385:497–502. DOI: 10.1016/j.bbrc.2009.05.073. PMID: 19464263.
58. Sharma A, Burridge PW, McKeithan WL, et al. 2017; High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci Transl Med. 9:eaaf2584. DOI: 10.1126/scitranslmed.aaf2584. PMID: 28202772. PMCID: PMC5409837.
59. Archer CR, Sargeant R, Basak J, Pilling J, Barnes JR, Pointon A. 2018; Characterization and validation of a human 3D cardiac microtissue for the assessment of changes in cardiac pathology. Sci Rep. 8:10160. DOI: 10.1038/s41598-018-28393-y. PMID: 29976997. PMCID: PMC6033897.
60. Truitt R, Mu A, Corbin EA, et al. 2018; Increased afterload augments sunitinib-induced cardiotoxicity in an engineered cardiac microtissue model. JACC Basic Transl Sci. 3:265–276. DOI: 10.1016/j.jacbts.2017.12.007. PMID: 30062212. PMCID: PMC6059907.
61. Magdy T, Jiang Z, Jouni M, et al. 2021; RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy. Cell Stem Cell. 28:2076–2089.e7. DOI: 10.1016/j.stem.2021.08.006. PMID: 34525346. PMCID: PMC8642268.
62. Sallam K, Thomas D, Gaddam S, et al. 2022; Modeling effects of immunosuppressive drugs on human hearts using induced pluripotent stem cell-derived cardiac organoids and single-cell RNA sequencing. Circulation. 145:1367–1369. DOI: 10.1161/CIRCULATIONAHA.121.054317. PMID: 35467958. PMCID: PMC9472526.
63. Zhang H, Tian L, Shen M, et al. 2019; Generation of quiescent cardiac fibroblasts from human induced pluripotent stem cells for in vitro modeling of cardiac fibrosis. Circ Res. 125:552–566. DOI: 10.1161/CIRCRESAHA.119.315491. PMID: 31288631. PMCID: PMC6768436.
64. Feyen DAM, Perea-Gil I, Maas RGC, et al. 2021; Unfolded protein response as a compensatory mechanism and potential therapeutic target in PLN R14del cardiomyopathy. Circulation. 144:382–392. DOI: 10.1161/CIRCULATIONAHA.120.049844. PMID: 33928785. PMCID: PMC8667423.
65. Hulin A, Hortells L, Gomez-Stallons MV, et al. 2019; Maturation of heart valve cell populations during postnatal remodeling. Development. 146:dev173047. DOI: 10.1242/dev.173047. PMID: 30796046. PMCID: PMC6602342.
66. Khan SU, Huang Y, Ali H, et al. 2024; Single-cell RNA sequencing (scRNA-seq): advances and challenges for cardiovascular diseases (CVDs). Curr Probl Cardiol. 49:102202. DOI: 10.1016/j.cpcardiol.2023.102202. PMID: 37967800.
67. Matsumoto R, Yamamoto T, Takahashi Y. 2021; Complex organ construction from human pluripotent stem cells for biological research and disease modeling with new emerging techniques. Int J Mol Sci. 22:10184. DOI: 10.3390/ijms221910184. PMID: 34638524. PMCID: PMC8508560.
68. Wu T, Liang Z, Zhang Z, et al. 2022; PRDM16 is a compact myocardium-enriched transcription factor required to maintain compact myocardial cardiomyocyte identity in left ventricle. Circulation. 145:586–602. DOI: 10.1161/CIRCULATIONAHA.121.056666. PMID: 34915728. PMCID: PMC8860879.
69. Ko T, Nomura S, Yamada S, et al. 2022; Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis. Nat Commun. 13:3275. DOI: 10.1038/s41467-022-30630-y. PMID: 35672400. PMCID: PMC9174232.
70. Camp JG, Wollny D, Treutlein B. 2018; Single-cell genomics to guide human stem cell and tissue engineering. Nat Methods. 15:661–667. DOI: 10.1038/s41592-018-0113-0. PMID: 30171231.
71. Lee J, Hyeon DY, Hwang D. 2020; Single-cell multiomics: technologies and data analysis methods. Exp Mol Med. 52:1428–1442. DOI: 10.1038/s12276-020-0420-2. PMID: 32929225. PMCID: PMC8080692.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr