J Gynecol Oncol.  2024 Jul;35(4):e97. 10.3802/jgo.2024.35.e97.

LncRNA STARD7-AS1 suppresses cervical cancer cell proliferation while promoting autophagy by regulating miR-31-5p/TXNIP axis to inactivate the mTOR signaling

Affiliations
  • 1College of Food and Drugs, Luoyang Polytechnic, Luoyang, China
  • 2Department of Central Laboratory, The 989th Hospital, Luoyang, China

Abstract


Objective
Cervical cancer (CC) is a serious gynecologic health issue for women worldwide. Long non-coding RNA (lncRNA) has been well-documented in controlling malignant behavior of various cancer cells. The role of lncRNA STARD7-AS1 in regulating CC cell proliferation and autophagy and its possible mechanism were investigated in this work.
Methods
RNA expression and protein levels were quantified by reverse transcription quantitative polymerase chain reaction and western blotting. The location of STARD7-AS1 in CC cells was examined using subcellular fraction assays. Cell Counting Kit-8 assays and colony forming assays were performed to measure CC cell viability and proliferation. Autophagy in CC cells was evaluated using macrophage-derived chemokine (MDC) staining and transmission electron microscopy. The binding between microRNA (miR)-31-5p and STARD7-AS1 (or thioredoxin-interacting protein [TXNIP]) was determined by performing luciferase reporter, RNA pull-down or RNA immunoprecipitation assays.
Results
STARD7-AS1 overexpression significantly suppressed CC cell viability and proliferation while notably inducing autophagy. STARD7-AS1 upregulated TXNIP expression via interaction with miR-31-5p. In addition, the effects of STARD7-AS1 on CC cell proliferation and autophagy were reversed by TXNIP silencing. The suppressive effect of STARD7-AS1 overexpression on phosphorylated levels of mTOR and S6K1 was countervailed by TXNIP deficiency.
Conclusion
In conclusion, lncRNA STARD7-AS1 inhibits CC cell proliferation and promotes cell autophagy by targeting the miR-31-5p/TXNIP axis to inactivate the mTOR signaling.

Keyword

Autophagy; Bioinformatics; Cervical Cancer; Competitive Endogenous RNA
Full Text Links
  • JGO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr