1. Randall JW, Rammohan N, Das IJ, Yadav P. Towards accurate and precise image-guided radiotherapy: clinical applications of the MR-Linac. J Clin Med. 2022; 11:4044.
2. Bujold A, Craig T, Jaffray D, Dawson LA. Image-guided radiotherapy: has it influenced patient outcomes? Semin Radiat Oncol. 2012; 22:50–61.
3. Franzone P, Fiorentino A, Barra S, Cante D, Masini L, Cazzulo E, et al. Image-guided radiation therapy (IGRT): practical recommendations of Italian Association of Radiation Oncology (AIRO). Radiol Med. 2016; 121:958–65.
4. Tirkes T, Menias CO, Sandrasegaran K. MR imaging techniques for pancreas. Radiol Clin North Am. 2012; 50:379–93.
5. Heerkens HD, Hall WA, Li XA, Knechtges P, Dalah E, Paulson ES, et al. Recommendations for MRI-based contouring of gross tumor volume and organs at risk for radiation therapy of pancreatic cancer. Pract Radiat Oncol. 2017; 7:126–36.
6. Grimbergen G, Eijkelenkamp H, Heerkens HD, Raaymakers BW, Intven MP, Meijer GJ. Intrafraction pancreatic tumor motion patterns during ungated magnetic resonance guided radiotherapy with an abdominal corset. Phys Imaging Radiat Oncol. 2022; 21:1–5.
7. Eccles CL, Patel R, Simeonov AK, Lockwood G, Haider M, Dawson LA. Comparison of liver tumor motion with and without abdominal compression using cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2011; 79:602–8.
8. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006; 33:3874–900.
9. Fassi A, Schaerer J, Fernandes M, Riboldi M, Sarrut D, Baroni G. Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate. Int J Radiat Oncol Biol Phys. 2014; 88:182–8.
10. Palacios MA, Bohoudi O, Bruynzeel AM, van Sorsen de Koste JR, Cobussen P, Slotman BJ, et al. Role of daily plan adaptation in MR-guided stereotactic ablative radiation therapy for adrenal metastases. Int J Radiat Oncol Biol Phys. 2018; 102:426–33.
11. Song JY, Chie EK, Kang SH, Jeon YJ, Ko YA, Kim DY, et al. Dosimetric evaluation of magnetic resonance imaging-guided adaptive radiation therapy in pancreatic cancer by extent of re-contouring of organs-at-risk. Radiat Oncol J. 2022; 40:242–50.
12. Bohoudi O, Bruynzeel AM, Senan S, Cuijpers JP, Slotman BJ, Lagerwaard FJ, et al. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiother Oncol. 2017; 125:439–44.
13. Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol. 2014; 24:196–9.
14. Lee D, Renz P, Oh S, Hwang MS, Pavord D, Yun KL, et al. Online adaptive MRI-guided stereotactic body radiotherapy for pancreatic and other intra-abdominal cancers. Cancers (Basel). 2023; 15:5272.
15. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Phys Med Biol. 2008; 53:909–23.
16. Appelt AL, Elhaminia B, Gooya A, Gilbert A, Nix M. Deep learning for radiotherapy outcome prediction using dose data: a review. Clin Oncol (R Coll Radiol). 2022; 34:e87–96.
17. Liu S, Zhang J, Li T, Yan H, Liu J. Technical note: a cascade 3D U-Net for dose prediction in radiotherapy. Med Phys. 2021; 48:5574–82.
18. Ahn SH, Kim E, Kim C, Cheon W, Kim M, Lee SB, et al. Deep learning method for prediction of patient-specific dose distribution in breast cancer. Radiat Oncol. 2021; 16:154.
19. Nguyen D, Jia X, Sher D, Lin MH, Iqbal Z, Liu H, et al. 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys Med Biol. 2019; 64:065020.
20. Hedden N, Xu H. Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models. Phys Med. 2021; 83:101–7.
21. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016: Conference, Proceedings, Part I; 2016 Oct 17-21; Athens, Greece. Berlin, Heidelberg: Springer-Verlag;2016.
22. Zhang J, Lu ZT, Pigrish V, Feng QJ, Chen WF. Intensity based image registration by minimizing exponential function weighted residual complexity. Comput Biol Med. 2013; 43:1484–96.
23. Norton JA, Harris EJ, Chen Y, Visser BC, Poultsides GA, Kunz PC, et al. Pancreatic endocrine tumors with major vascular abutment, involvement, or encasement and indication for resection. Arch Surg. 2011; 146:724–32.
24. Smith WP, Doctor J, Meyer J, Kalet IJ, Phillips MH. A decision aid for intensity-modulated radiation-therapy plan selection in prostate cancer based on a prognostic Bayesian network and a Markov model. Artif Intell Med. 2009; 46:119–30.
25. Tschiatschek S, Paul K, Pernkopf F. Integer Bayesian network classifiers. Lect Notes Comput Sci. 2014; 8726:209–24.
27. Liu J, Zhang X, Cheng X, Sun L. A deep learning-based dose prediction method for evaluation of radiotherapy treatment planning. J Radiat Res Appl Sci. 2024; 17:100757.
28. Wang W, Sheng Y, Palta M, Czito B, Willett C, Hito M, et al. Deep learning-based fluence map prediction for pancreas stereotactic body radiation therapy with simultaneous integrated boost. Adv Radiat Oncol. 2021; 6:100672.
29. Guerreiro F, Seravalli E, Janssens GO, Maduro JH, Knopf AC, Langendijk JA, et al. Deep learning prediction of proton and photon dose distributions for paediatric abdominal tumours. Radiother Oncol. 2021; 156:36–42.
30. Gill CJ, Sabin L, Schmid CH. Why clinicians are natural bayesians. BMJ. 2005; 330:1080–3.
31. Smith WP, Doctor J, Meyer J, Kalet IJ, Phillips MH. A decision aid for intensity-modulated radiation-therapy plan selection in prostate cancer based on a prognostic Bayesian network and a Markov model. Artif Intell Med. 2009; 46:119–30.
32. McShan D, Luo Y, Schipper M, TenHaken R. Bayesian decision support for adaptive lung treatments. J Phys Conf Ser. 2014; 489:012053.
33. Hargrave C, Deegan T, Bednarz T, Poulsen M, Harden F, Mengersen K. An image-guided radiotherapy decision support framework incorporating a Bayesian network and visualization tool. Med Phys. 2018; 45:2884–97.
34. Liu S, Wu Y, Wooten HO, Green O, Archer B, Li H, et al. Methods to model and predict the ViewRay treatment deliveries to aid patient scheduling and treatment planning. J Appl Clin Med Phys. 2016; 17:50–62.
35. Chun M, Kwon O, Park JM, Kim JI. Quantifications of intensity-modulated radiation therapy plan complexities in magnetic resonance image guided radiotherapy systems. J Radiat Prot Res. 2021; 46:48–57.
36. Chiroma H, Gital AY, Abubakar A, Zeki A. Comparing performances of Markov Blanket and Tree Augmented Naïve-Bayes on the IRIS dataset. Proc Int MultiConf Eng Comput Sci. 2014; 1:328–31.
37. Choi CH, Park SY, Kim JI, Kim JH, Kim K, Carlson J, et al. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. Br J Radiol. 2017; 90:20160652.
38. Ng J, Gregucci F, Pennell RT, Nagar H, Golden EB, Knisely JPS, et al. MRI-LINAC: a transformative technology in radiation oncology. Front Oncol. 2023; 13:1117874.
39. Liu X, Li Z, Yin Y. Clinical application of MR-Linac in tumor radiotherapy: a systematic review. Radiat Oncol. 2023; 18:52.