1. Mitchell TM. Machine Learning. 1st ed. New York, NY: McGraw-Hill;1997.
2. Kim HS, Yoon KH. Lessons from use of continuous glucose monitoring systems in digital healthcare. Endocrinol Metab. 2020; 35:541–8.
Article
3. Lee H, Kim HS. Logistic regression and least absolute shrinkage and selection operator. Cardiovasc Prev Pharmacother. 2020; 2:142–6.
Article
4. Lee M, Kim H, Joe H, Kim HG. Multi-channel PINN: investigating scalable and transferable neural networks for drug discovery. J Cheminform. 2019; 11:46.
Article
5. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016; 6:26094.
Article
6. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AW, Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D, Kavukcuoglu K, Hassabis D. Improved protein structure prediction using potentials from deep learning. Nature. 2020; 577:706–10.
Article
7. Xu J, Zhang H, Zheng J, Dovoedo P, Yin Y. eCAMI: simultaneous classification and motif identification for enzyme annotation. Bioinformatics. 2020; 36:2068–75.
Article
8. Russell S, Norvind P. Artificial Intelligence: a Modern Approach. 3rd ed. Englewood Cliffs, NJ: Prentice Hall;2010.
9. Herold D, Lutter D, Schachtner R, Tome AM, Schmitz G, Lang EW. Comparison of unsupervised and supervised gene selection methods. Annu Int Conf IEEE Eng Med Biol Soc. 2008; 2008:5212–5.
Article
10. Goudbeek M, Swingley D, Smits R. Supervised and unsupervised learning of multidimensional acoustic categories. J Exp Psychol Hum Percept Perform. 2009; 35:1913–33.
Article
11. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002; 35:352–9.
Article
12. Lorencin I; Anđelić N, Španjol J, Car Z. Using multi-layer perceptron with Laplacian edge detector for bladder cancer diagnosis. Artif Intell Med. 2020; 102:101746.
Article
13. Castro W, Oblitas J, Santa-Cruz R, Avila-George H. Multilayer perceptron architecture optimization using parallel computing techniques. PLoS One. 2017; 12:e0189369.
Article
14. Metsker O, Magoev K, Yanishevskiy S, Yakovlev A, Kopanitsa G, Zvartau N. Identification of diabetes risk factors in chronic cardiovascular patients. Stud Health Technol Inform. 2020; 273:136–41.
15. Rossi F, Conan-Guez B. Theoretical properties of projection based multilayer perceptrons with functional inputs. Neural Process Lett. 2006; 23:55–70.
Article
16. Ghosh K, Stuke A, Todorović M; Jørgensen PB, Schmidt MN, Vehtari A, Rinke P. Deep learning spectroscopy: neural networks for molecular excitation spectra. Adv Sci (Weinh). 2019; 6:1801367.
Article
17. Shafi N, Bukhari F, Iqbal W, Almustafa KM, Asif M, Nawaz Z. Cleft prediction before birth using deep neural network. Health Informatics J. 2020; 26:2568–85.
Article
18. Kim EH, Oh SK, Pedrycz W. Design of double fuzzy clustering-driven context neural networks. Neural Netw. 2018; 104:1–14.
Article
19. Li Y, Zhang T. Deep neural mapping support vector machines. Neural Netw. 2017; 93:185–94.
Article
20. Hong S, Zhou Y, Wu M, Shang J, Wang Q, Li H, Xie J. Combining deep neural networks and engineered features for cardiac arrhythmia detection from ECG recordings. Physiol Meas. 2019; 40:054009.
Article
21. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, Tan RS. A deep convolutional neural network model to classify heartbeats. Comput Biol Med. 2017; 89:389–96.
Article
22. Cai L, Gao J, Zhao D. A review of the application of deep learning in medical image classification and segmentation. Ann Transl Med. 2020; 8:713.
Article
23. Mishra S, Banerjee M. Automatic caption generation of retinal diseases with self-trained RNN merge model. In : Chaki R, Cortesi A, Saeed K, Chaki N, editors. Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing, Vol. 1136. Springer: Singapore;2020. p. 1–10.