1. Yoon HJ, Jeong YJ, Kang H, Jeong JE, Kang DY. 2019; Medical image analysis using artificial intelligence. Prog Med Phys. 30:49–58. DOI:
10.14316/pmp.2019.30.2.49.
2. Kaur C, Garg U. 2023; Artificial intelligence techniques for cancer detection in medical image processing: a review. Materials Today. 81(Part 2):806–809. DOI:
10.1016/j.matpr.2021.04.241.
3. Koul A, Bawa RK, Kumar Y. Artificial intelligence in medical image processing for airway diseases. 2022. Connected e-Health: integrated IoT and cloud computing. Springer International Publishing;p. 217–254. DOI:
10.1007/978-3-030-97929-4_10.
4. Alnaggar OAMF, Jagadale BN, Saif MAN, Ghaleb OAM, Ahmed AAQ, Aqlan HAA, et al. 2024; Efficient artificial intelligence approaches for medical image processing in healthcare: comprehensive review, taxonomy, and analysis. Artif Intell Rev. 57:221. DOI:
10.1007/s10462-024-10814-2.
5. Ma D, Dang B, Li S, Zang H, Dong X. 2023; Implementation of computer vision technology based on artificial intelligence for medical image analysis. Int J Comput Sci Inf Technol. 1:69–76. DOI:
10.62051/ijcsit.v1n1.10.
6. Razzak MI, Naz S, Zaib A. Deep learning for medical image processing: overview, challenges and the future. 2018. Classification in BioApps: automation of decision making. Springer International Publishing;p. 323–350. DOI:
10.1007/978-3-319-65981-7_12.
7. Maier A, Syben C, Lasser T, Riess C. 2019; A gentle introduction to deep learning in medical image processing. Z Med Phys. 29:86–101. DOI:
10.1016/j.zemedi.2018.12.003. PMID:
30686613.
8. Mishra S, Tripathy HK, Acharya B. A precise analysis of deep learning for medical image processing. 2021. Bio-inspired neurocomputing. Springer International Publishing;p. 25–41. DOI:
10.1007/978-981-15-5495-7_2.
9. Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyás B. 2020; 3D deep learning on medical images: a review. Sensors (Basel). 20:5097. DOI:
10.3390/s20185097. PMID:
32906819. PMCID:
PMC7570704.
10. Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, et al. 2021; AI applications to medical images: from machine learning to deep learning. Phys Med. 83:9–24. DOI:
10.1016/j.ejmp.2021.02.006. PMID:
33662856.
11. Dhiman G, Juneja S, Viriyasitavat W, Mohafez H, Hadizadeh M, Islam MA, et al. 2022; A novel machine-learning-based hybrid CNN model for tumor identification in medical image processing. Sustainability. 14:1447. DOI:
10.3390/su14031447.
12. Jasti VDP, Zamani AS, Arumugam K, Naved M, Pallathadka H, Sammy F, et al. 2022; Computational technique based on machine learning and image processing for medical image analysis of breast cancer diagnosis. Secur Commun Netw. 2022:1918379. DOI:
10.1155/2022/1918379.
13. López-Ojeda W, Hurley RA. 2023; Digital innovation in neuroanatomy: three-dimensional (3D) image processing and printing for medical curricula and health care. J Neuropsychiatry Clin Neurosci. 35:206–209. DOI:
10.1176/appi.neuropsych.20230072. PMID:
37448309.
14. Giannopoulos AA, Pietila T. Post-processing of DICOM images. 2017. 3D printing in medicine: a practical guide for medical professionals. Springer International Publishing;p. 23–34. DOI:
10.1007/978-3-319-61924-8_3.
15. Chotikunnan R, Chotikunnan P, Puttasakul T, Sangworasil M, Matsuura T, Thongpance N. 2017. A novel technique for 3D printer to create organ 3D model from DICOM file. Rangsit University.
16. Bansal G, Rajgopal K, Chamola V, Xiong Z, Niyato D. 2022; Healthcare in metaverse: a survey on current metaverse applications in healthcare. IEEE Access. 10:119914–119946. DOI:
10.1109/ACCESS.2022.3219845.
17. Kamio T, Suzuki M, Asaumi R, Kawai T. 2020; DICOM segmentation and STL creation for 3D printing: a process and software package comparison for osseous anatomy. 3D Print Med. 6:17. DOI:
10.1186/s41205-020-00069-2. PMID:
32737703. PMCID:
PMC7393875.
18. Fogarasi M, Coburn JC, Ripley B. 2022; Algorithms used in medical image segmentation for 3D printing and how to understand and quantify their performance. 3D Print Med. 8:18. DOI:
10.1186/s41205-022-00145-9. PMID:
35748984. PMCID:
PMC9229760.
19. Müller D, Kramer F. 2021; MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning. BMC Med Imaging. 21:12. DOI:
10.1186/s12880-020-00543-7. PMID:
33461500. PMCID:
PMC7814713.
20. Anderson BM, Wahid KA, Brock KK. 2021; Simple python module for conversions between DICOM images and radiation therapy structures, masks, and prediction arrays. Pract Radiat Oncol. 11:226–229. DOI:
10.1016/j.prro.2021.02.003. PMID:
33607331. PMCID:
PMC8102371.
21. Mamdouh R, El-Bakry HM, Riad A, El-Khamisy N. 2020; Converting 2D-medical image files "DICOM" into 3D- models, based on image processing, and analysing their results with python programming. WSEAS Trans Comput. 19:10–20. DOI:
10.37394/23205.2020.19.2.
22. Lee LK, Liew SC. 2015. Aug. 19-21. A survey of medical image processing tools. Paper presented at: 2015 4th International Conference on Software Engineering and Computer Systems (ICSECS). Kuantan, Malaysia: DOI:
10.1109/ICSECS.2015.7333105.